
Performance Improvement
Using Dynamic

Performance Stubs

Dipl.-Ing. (FH) Peter Trapp
Prof. Dr. Christian Facchi

Arbeitsberichte

Working Papers

Kompetenz schafft Zukunft

Creating competence for the future

 F a c h h o c h s c h u l e
I n g o l s t a d t

U n i v e r s i t y o f
App l ied Sc iences

Performance Improvement
Using Dynamic

Performance Stubs

Dipl.-Ing. (FH) Peter Trapp
Prof. Dr. Christian Facchi

Arbeitsberichte
Working Papers

Heft Nr. 14 aus der Reihe
"Arbeitsberichte - Working Papers"

ISSN 1612-6483

Ingolstadt, im August 2007

Abstract

Dynamic Performance Stubs support performance improve-
ment. They can be used to identify “hidden” bottlenecks
and also to provide better estimations of the gain from per-
formance improvement. The idea behind these stubbing
mechanism will be described, the core concept will be ex-
plained and a closer look on the possibility of creating stubs
will be given. Furthermore an introduction on “How to use
dynamic performance stubs” is also included.

Dynamic Performance Stubs

1 Introduction

Current performance improvements follow a
strict line: analysis - test - improvement - ver-
ification. This procedure depends strongly on
the experience of the person realizing a perfor-
mance optimization and can only roughly be
used for estimations. One of the problems us-
ing this methodology is the cost-benefit anal-
ysis of improvement possibilities. The expert
has to know the complete system at a very
detailed level which is hardly possible within
large software projects. Another problem of
this approach is that the optimization has to be
done without really knowing how much of the
module has to be optimized [1]. Is it enough to
slightly modify performance-critical functions
or is it necessary to find a new algorithm for
the complete procedure?

After the optimization of some parts nor-
mally other additional performance bottle-
necks delay the execution time of the compo-
nent under study (CUS) [1]. Without knowing
all bottlenecks in advance the improvement ef-
fort may lead to an unexpectedly small gain.

Most of these problems can be bypassed
with the dynamic performance stub. It com-
bines performance measurements with the well-
known techniques of stubbing used in the im-
plementation and test phase of software de-
velopment. To develop dynamic performance
stubs the performance of the already existing
software modules (systems under test, SUT)
have to be studied at a very detailed level and
several bottlenecks have to be identified. This
performance behavior can be modeled using
the performance simulation functions (PSF).
The resulting performance stub can be used
for modeling different performance behaviors
of the replaced unit, for estimating the achiev-
able gain or to identify other bottlenecks.

There are two different research scopes in
simulation of the performance behavior. In
[2] it is explained how performance of inner
loops can be modeled at the instruction level
and which effect they have on the memory/-
cache performance. Although the possibil-
ity of modeling software modules exists, the

high degree of granularity of this approach re-
duces the usability for stubbing whole soft-
ware functions/modules. In [3] the usage of
smart stubs for software analysis of functions
and modules which are partly not available
yet is described. Therefore the stubs simulate
the budget regarding storage and timing re-
sources, which have been estimated, for the to-
be-implemented software parts. Also mainly a
management point of view for the non-existing
software will be taken. However, the dynamic
performance stubs in our approach will be used
for stubbing already implemented and mea-
sured software parts in order to find the bounds
of the performance improvement within that
part. This procedure helps to identify the real
gain of the performance improvement without
really improving it and additionally shows the
next bottleneck. So the cost-benefit analysis
for improvement activities can be achieved in
a more realistic way, because a proper simu-
lated result is better than a simple estimation.

All results will be verified in practice on
a software platform for UMTS delivered by
Nokia Siemens Networks.

The rest of the paper is structured in the
following way. Section 2 provides a small
overview about current performance improve-
ments and the method of performance engi-
neering regarding to performance stubs. Sec-
tion 3 describes the design of dynamic perfor-
mance stubs. A method of using stubs for per-
formance improvement can be found in Section
4. Sections 5 and 6 handle the advantages as
well as problems and restrictions of the perfor-
mance stubs. Conclusions and future work are
described in Section 7.

2 Classification of Dynamic
Performance Stubs

The aim of each software performance opti-
mization project is to find bottlenecks and to
optimize the corresponding software unit in or-
der to reduce the execution time [4, 5]. A
bottleneck is the part of the software with the
highest utilization/delay and contributes most

- 1 -

Dynamic Performance Stubs

to the used time in total respectively to the
throughput of a system. Improving this bot-
tleneck has the strongest effect on the system
performance and identifying it is the most chal-
lenging part in each performance engineering
project [5].

An overview of a performance evaluation
study can be seen in the Box 2.2 of [5] or in
[6]. Information about tools used in perfor-
mance improvement studies are described and
classified, e.g. in [7] and [8].

Beside of the straightforward software per-
formance optimization procedure there is also
a more general approach to ensure the qual-
ity of the software relating to the performance.
It’s called “performance engineering” (see also
[9]) and combines several concepts of software
engineering and performance improvement dis-
ciplines.

Performance improvement using dynamic
performance stubs contributes to some of the
parts of the performance engineering method.
The descriptions are taken from [6]:

• Performance Measurement

Measurements on existing software to ver-
ify performance criteria or to identify spe-
cific performance problems.

• Performance Tuning

A discipline to improve slow code in order
to reach the performance targets.

• Software Engineering

A discipline to develop large software sys-
tems.

• Software Quality Assurance

Includes requirements for audits and for
software product quality evaluations.

The dynamic performance stubs models the
performance behavior of software modules or
bottlenecks and can be used for measuring and
tuning the software. Additionally they can be
taken for testing which is a part of the software
development process. Therefore it contributes
to the “software quality assurance”.

3 Dynamic Performance
Stubs

As already described, the concept of dynamic
performance stubs combines the methods of
software testing [10, 11, 12] and performance
improvements [5, 7, 8, 13]. There are only little
differences between stubbing for performance
improvements and stubbing for testing reasons.
Normally stubs are used for simulating remote
systems or for non-existing software modules
and functions, as in software testing [14]. In
this approach the CUS will be replaced by dy-
namic performance stubs in order to simulate
the performance behavior of this software unit
as a primary goal. This procedure relates to
stubbing a single software unit and hence it will
be called “local”. The performance simulation
functions (PSF) can also be used to change the
behavior of the complete system. Therefore a
software module has to be created which in-
teracts “global” in the sense of influencing the
whole system instead of only one software unit.

system

software component

(SUT)

bottleneck

(CUS)

dynamic performance stub

 (local)

simulated software

functionality (SSF)

performance simulation

functions (PSF)

performance measurement

functions (PMF)

calibration functions

(CF)

dynamic performance

stub (global)

Figure 1: Interactions of “Dynamic Perfor-
mance Stubs”

Figure 1 sketches the design and the inter-
action between a real system and the dynamic
performance stubs. The lined arrow describes
a replacement. Filled arrowheads describe the
extension of a unit by this feature and the
dashed block provides an additional function-
ality to the dynamic performance stub and will
not really stub a software unit.

The framework of the dynamic performance
stub consists of the following parts which are
presented in Figure 1:

- 2 -

Dynamic Performance Stubs

• simulated software functionality (SSF)

• performance simulation functions (PSF)

• performance measurement functions
(PMF)

• calibration functions (CF)

The simulated software functionality (SSF)
is additionally implemented code in order to
simulate the functional behavior of the already
exiting CUS. More information about a possi-
ble methodology of stubbing for already exist-
ing software modules will be described in Sec-
tion 3.2.

After creating the functional stub (using the
SSF) the performance behavior of the CUS
can be modeled using the performance simu-
lation functions (PSF). They will provide the
possibility to simulate different isolated perfor-
mance parameters such as the time spent in the
component. The functions can be combined in
order to simulate the “real” performance be-
havior. Please refer to Section 3.3 for a wider
view of performance parameters which can be
simulated by the PSF.

Some basic performance evaluations can
be done with the performance measurement
functions (PMF). They will provide a rough
overview of the system behavior, e.g. the num-
ber of context switches while the stub has been
executed. The performance measurement func-
tions only extend the possibilities of the stubs
and does not have to be included in the stub.
They can also be replaced by more specific or
detailed performance measurement tools, such
as [15, 16, 17].

Additionally the concept of the dynamic per-
formance stubs contains the calibration func-
tions (CF). These are important for the ini-
tial setup of the stubs to the target, e.g. the
time needed for an “empty loop” will be de-
termined in order to setup a realistic behav-
ior. This measurement will be done using the
performance measurement functions. The cali-
bration functions have to be executed once for
each hardware system.

3.1 Basic Design Decisions

The major decisions regarding the design and
implementation of the dynamic performance
stub are:

1. The programming language used in the
project by Nokia Siemens Networks is
C/C++. Therefore the dynamic perfor-
mance stubs have to be written in C. This
language has several advantages such as
the possibility of inling assembler code if a
high optimization level is necessary. Addi-
tionally C/C++ can be compiled and used
as a binary executable code for the native
machine language of the CPU used. This
is highly recommended in [18] since the
programming language influences the per-
formance of the complete system. More-
over, most of the C/C++ compilers pro-
vide different optimization flags, e.g. [19].
However, the methodology of the dynamic
performance stub is independent to the
implementation language and can also be
used with interpreted, just-in-time compi-
lation or intermediate code.

2. The simulation functions should be config-
urable and adjustable to the target. This
should be done only once during the setup
of the stubs.

3. Some basic performance measurement
functions should be available. This is nec-
essary for calibrating the performance sim-
ulation properties and for proving that the
stubs are working properly.

4. The simulation functions of the perfor-
mance behavior should be used as a
toolset. All functions should be accessible
without further need of configuration.

3.2 Simulated Software Functional-
ity (SSF) - Stub Generation

Commonly a stub in software engineering is
used as a proxy and provides an adequate
replacement for the behavior of the to-be-
implemented software modules and functions.

- 3 -

Dynamic Performance Stubs

It is mainly used in software testing of dis-
tributed systems or in modularized software
[12].

Therefore the stubbed function uses the
same I/O parameters to simulate the missing
procedure and provides only a basic functional-
ity, e.g. it returns the results by reading them
from a hash table, does nothing or it may sim-
ply write trace messages. From the systems
point of view the stub will be included and
work just as the real procedure [14].

The idea behind the simulated software func-
tionality and the functional stubs is nearly the
same. The only difference between stubbing
for performance reasons and the generation of
“test-stubs” as mentioned is the part of soft-
ware which will be used. Stubbing for per-
formance reasons means to replace an already
existing code whereas stubbing for testing cre-
ates basic functionality of non-existing software
[12, 14] or they are used for remote systems.

A methodology of stubbing already existing
and deterministic software functions can be de-
scribed as follows. First of all the in- and out-
put values of the CUS have to be identified
while tracing them. Therefore proper trace-
points have to be inserted in the source code
and then the software has to be re-run with
a proper and deterministic test case scenario.
Rewrite the CUS using the in- and output val-
ues (e.g. using a hash table) and by replacing
the time consuming functions where the soft-
ware normally walks through. Now the stub
should be working properly.

3.3 Performance Simulation Func-
tions (PSF)

A PSF simulates the non-functional behavior
of a function regarding to one aspect of per-
formance. They are divided into four classes
according to the performance bounds to which
a software can belong. For a more detailed
description the reader is refered to [20]. The
classes are as follows:

• CPU

• Memory

• I/O

• Network

A fifth category can be thought of is the User
[5], in our approach it will be included for sim-
plification in the I/O category of the PSF.

Almost each of the categories can be divided
into a globally visible and a locally visible part.
These subdivision indicates whether the stub
will only have local interactions or if it will af-
fect the whole software system (global). This
is needed for classification for the PSF and
should not be mixed with the global- and local
dynamic performance stub mentioned in Sec-
tion 3 where the stub can be realized as re-
placement of a software part or can be used
globally, e.g. as a kernel module. A closer look
in the categories will be given in the following
subsections.

3.3.1 CPU-PSF

This PSF relates to the clock cycles used by
the software. One part of the CPU-PSF is the
time spent in the stub, while it is scheduled.
This is called globally visible because no other
module can use the CPU while the stub is run-
ning at the same time. In the case of a locally
visible CPU-PSF the module will be blocked
due to a timing event. Here the CPU is free
for other processes. An example implementa-
tion of a global- and local visible realization of
the PSF simulating the CPU is also given.

Example for a locally visible CPU-PSF
To simulate the locally visible CPU-PSF, which
means that the real process is blocked/waiting
for an event, can be handled easily by letting
it sleep for the desired time.

Implementation For instance in the
UNIX environment the “usleep()” function can
be used. For details see “unistd.h”.

Example for a globally visible CPU-PSF
The globally visible stubbing of CPU cycles can
be realized using “no operation” (NOP) so that

- 4 -

Dynamic Performance Stubs

the resource CPU will be used by this PSF.
They have to be executed in a loop in order to
reach the desired time consumption. The main
problem is that the “used cycle” should not af-
fect any other part of the system, e.g. the data
L1-Cache of the processor. Additionally the
NOPs and also the loop have to be protected
against compiler optimizations.

Implementation An example implemen-
tation can be seen in Listing 1. The func-
tion “useCycles” takes a value standing for the
processor cycles working for “usec” as input.
The “TIME” constant is defined within the dy-
namic performance stub and has been evalu-
ated using the calibration functions. Here each
iteration will exactly consume 1µs while loop-
ing around the empty statement “;”.

void useCyc les (long usec)
{

long i =0;
for (i =0; i < usec ∗TIME; i++)
{

;
}

}

Listing 1: example implementation of a globally
visible CPU-PSF

This is only a simplified example and could
lead to non-reproduceable results if the throt-
tling functionality of the CPU is switched on.

3.3.2 Memory-PSF

Memory with respect to PSF refers to the
volatile storage. More in detail the different
types of memory described in this sections are:

• main memory

• caches

• registers

Main Memory The delay time of the main
memory strongly depends on the architecture
[21]. These dependencies can be handled in the

setup of the dynamic performance stubs using
the calibration functions. Although the pag-
ing/swapping mechanisms are often handled as
I/O, it will be integrated to this PSF cate-
gory. The reason for this is the coherence be-
tween the lack of memory and paging/swap-
ping. Moreover, our definition about I/O-PSF
does not match due to the fact that there is no
systemcall caused by the application to do pag-
ing/swapping. Additionally it is recommended
to deactivate paging/swapping in high perfor-
mance applications to increase the predictabil-
ity of the systems behavior.

The classification into locally- and globally
visible can also be done. An only locally visible
interaction of the PSF for the main memory
can be realized by locking any size of memory
which is only locally available to the stub. As
long as enough memory remains for the system,
no swapping or paging has been caused by the
locked parts. The system will “stay stable” and
the stub can use it is own memory.

For a globally visible influence the same
methodology can be used. Instead of protect-
ing the system from paging/swapping this be-
havior will be forced by locking a large amount
of memory. This will lead to memory misses
and results in hard disc accesses.

Caches Current processors have cache hier-
archies, e.g. the L1-, L2- and L3-Caches. De-
pending on the model there can also be differ-
ent L1-Caches for data and instructions [22].
The architecture which is currently used within
our research project does not provide a L1 In-
struction Cache. Therefore in this first ap-
proach only L1 Data Caches will be taken into
consideration. The system provides the possi-
bility of controlling the caching of instructions
and data through different dedicated registers
and several bits. Also the possibility to flush
or to disable the caches is given. These prop-
erties can be used for the globally- and locally
visible manipulation of the caches. For the
globally visible manipulation the already men-
tioned feature of disabling the caching mech-
anism can be used. This will lead to an in-

- 5 -

Dynamic Performance Stubs

creased execution time because all data have
to be taken from the main memory. Tagging
cache lines as modified and working on the
same data will lead to a cache miss although
the data does not really need to be changed.
This behaviors can be used for only interact-
ing locally visible.

The aforementioned methods represent just
a short introduction to the manipulation of
caches. There are much more different possi-
bilities for modifying the caching behavior, e.g.
different caching algorithms, implicit/explicit
caching [22] or thrashing the “direct mapped”
cache [23].

Processor Registers In [24] the processor
registers are divided into “user-visible” and
“control and status” registers. Here only the
“user-visible” will be taken into account. Ad-
ditionally there is only a locally visible impact.
This can be realized by e.g. using variables
which are tagged as “volatile”. Here the vari-
ables will be stored in the memory instead
of the registers. This can be interpreted as
“switch-off’ the register usage and will end up
in additional access time to the variable.

Additionally the stack will handled be in this
section. Stack related problems can have their
origin in large arrays as local variables [25].

Further and more detailed studies in this
area of processor registers will be conducted.
Also different architectures and methods such
as register-slicing have to be evaluated.

3.3.3 I/O-PSF

I/O in computer science describes the way to
handle the input and output values. Regard-
ing to performance improvement of user appli-
cations I/O can be described as the interface
between the application and the kernel real-
ized by specific systemcalls [25, 26]. During the
execution of these calls the process is blocked
due to “I/O” and will be scheduled out, which
means the CPU will be freed from the process
until the call has been finished and the pro-
cess will be scheduled in again [25]. System-
calls cover all interactions between the kernel

and the user application this includes also the
memory and the network. However, these parts
are already discussed in other sections of the
PSF and will not be handled here. Therefore
only the secondary memory, e.g. hard disks are
taken into account. Further and more detailed
studies in this area of I/O-PSF are necessary.

3.3.4 Network-PSF

The Network-PSF will handle possible perfor-
mance parameters specific to the network, es-
pecially the data transferred from and into the
system. Also this part of the PSF can be di-
vided into globally- and locally visible imple-
mentation.

The first of these two parts can be simulated
by e.g. adding and removing network messages
from the receiving and sending queues. An-
other way to manipulate the whole system can
be realized with a producer/consumer scenario
which can be built using global dynamic per-
formance stubs. An example to reduce the net-
work load can modeled as follows. The SUT
will only send a fingerprint of this message and
the CUS will interpret the message and will an-
swer in a proper way to keep the system run-
ning. Therefore additionally to the CUS the
SUT has to be changed which will probably
add some overhead.

The second (locally visible) manipulation us-
ing the Network-PSF part can be to discard the
incoming messages without processing them
and using already prefetched data for answer-
ing. Additionally there are several other ap-
proaches to improve the speed of the network,
e.g. switching to an other IP stack, using a dif-
ferent protocol or to change the properties of
the sending behavior [25].

3.4 Performance Measurement
Functions (PMF)

The performance measurement functions are a
set of different functions for measuring perfor-
mance behavior and aimed to a proper cali-
bration of the PSF to the target. They can
additionally be used for basic evaluations in-

- 6 -

Dynamic Performance Stubs

side of the SUT, CUS or global dynamic per-
formance stub. The functions will be mainly
based on already existing functions such as
the “getrusage()” of “sys/resource.h” in Linux.
Therefore the performance measurement func-
tions can be considered as a wrapper classes to
provide a common interface to the user and to
hide the internals. As long as it is possible they
will be inlined in order to reduce overhead.

3.5 Calibration Functions (CF)

Some different values, e.g. the “TIME” (see
also Section 3.3.1) value in listing 1, have to be
set up in order to provide the suggested simu-
lation properties. This can be done using the
calibration functions. They provide an environ-
ment for the PSF and performance measure-
ment functions. The idea behind these func-
tions is to execute the PSF with several differ-
ent input values and to trace the according out-
put using the performance measurements pro-
vided by the performance measurement func-
tions. The calculation of the desired values
will also be done inside of the calibration func-
tions. Using the results will provide a proper
setup for the usage of different PSF in order
to stub the CUS. The calibration functions are
providing additional functionality such as they
will report if something unexpected was hap-
pening. In this scenario they will also give
hints on how to improve the measurement for
a proper calibration. As an example: a con-
text switch happened while the configuration
of the global CPU-PSF. The calibration func-
tion’s trace includes a warning that a context
switch was happening. Additionally it will give
a hint like raising the priority of the dynamic
performance stubs in order to get valid results.

4 Using Dynamic Perfor-
mance Stubs - Steps to-
wards a Methodology

In this section first steps on how to use dy-
namic performance stubs are presented. Due
to the fact that performance improvement is

a highly specialized task, where it is hard to
describe a standard procedure, only a possi-
ble method can be given, which can be used in
many cases, but not all. However, we extend
this method by some special operations, which
can be seen as a toolset to create dynamic per-
formance stubs.

4.1 Standard Method

As a fundamental prerequisite a reproducible
automated test of the system has to be avail-
able. The system’s use has to be restricted to
the task of performance optimization. With-
out such a test procedure it is not possible to
reproduce the performance results and thus to
validate the results or even more to isolate per-
formance bottlenecks. In addition the calibra-
tion function has to be parametrized according
the used hardware platform as sketched in Sec-
tion 3.5.

The method for performance optimizations
using dynamic performance stubs can be de-
scribed in the following steps:

1. Identification of performance bottlenecks.

As a first step some possible bottlenecks of
the origin software have to be identified.
First a performance measurement of the
whole system has to be realized. The de-
livered performance data has to be inter-
preted and some possible bottlenecks have
to be identified. This can be achieved, if
all performance data are available in a very
detailed level. So a “drill-down” method
on the delivered performance data can be
used. Please note that the success of this
step strongly depends on the experience
and the in depth knowledge of the software
of the analyzing person. As a result of this
step a list with possible performance bot-
tlenecks has to be generated. For further
information it is refered to [5, 8].

2. A cost-benefit analysis of optimizations
should be done.

Please note that in a first step this ratio
only might be estimated. The result of

- 7 -

Dynamic Performance Stubs

this step is a prioritized list of bottleneck
candidates.

3. Now a dynamic performance stub has to
be generated.

This can be done with the following steps:

(a) The CUS has to be determined. This
also includes a necessary level of ab-
straction, especially which functions
have to be stubbed.

(b) The functional behavior of the CUS
has to be simulated. This will be
done by the realization of the sim-
ulated software functionality.

(c) The performance behavior of the
CUS has to be determined and simu-
lated. The simulation will be realized
by the PSF.

(d) The correct function of the simulated
software functionality and the PSF
have to be validated. So performance
measurements have to be done with
the stubbed functionality. The re-
sults should be in the same range as
the original performance results. If
this is not the case, the PSF has to
be modified. This might also hap-
pen if the analysis for this bottleneck
candidate is not sound and as a con-
sequence it has to be reconsidered.

(e) As an additional check a performance
measurement with only a simulated
software functionality can be done
and the resulting data should be an-
alyzed very carefully. In addition the
next bottleneck might be visible.

4. Several measurements changing the per-
formance behavior of the stub should be
realized.

The performance data has to be analyzed
carefully. This can be done as described
in Step 1. Additionally several different
charts can be drawn. They will probably
indicate different system behaviors such as
a changeover from CPU to memory bound.

A cost-benefit analysis using the possible
gain can be applied and the effort for im-
proving the performance bottleneck can be
estimated based on the evaluation data.
As a further result there might appear new
bottlenecks, which should be checked us-
ing the method in Step 2. If no new bot-
tlenecks can be found, the next step can
be taken.

5. Based on this data the candidates for
spending optimization efforts can be cho-
sen and the work on improvement can be
started.

6. The optimized components should be in-
cluded in the software and a new perfor-
mance measurement should be started.

The achieved data should be compared
with simulated data. If there is a huge
discrepancy the method for finding bottle-
necks or even PSF should be corrected.

7. If the software has still not the desired per-
formance, goto Step 1.

4.2 Extension of the Standard
Method

In many cases the aforementioned method can
be used. However, it can be seen that per-
formance analysis is a highly sophisticated
and specialized task. In the following section
some possible techniques or alternatives to the
method described before have been sketched.
These can be seen as some ideas which might
help on the overall task like a partially filled
toolbox.

4.2.1 Mixture of PSF

Sometimes an isolated performance behavior is
not sufficient for simulation. E.g. using only
the CPU-PSF might lead to false results, if
the component uses in addition to a possible
heavy usage of the CPU also disk I/O very of-
ten. This is the case especially in bigger CUS.
A solution is to combine several different types

- 8 -

Dynamic Performance Stubs

of PSF in order to yield a more accurate sim-
ulation result. However, the degree of combi-
nation might be analyzed very careful. This is
especially on bigger CUS no easy task.

4.2.2 Full and Partial Stubs

Another problem appears on bigger CUS, too.
The components behavior can not be simulated
in a realistic way by a simple stub, where a
collection of input values delivers an output
value. Usually it might be an arbitrary inter-
leaved mixture of calling subroutines, internal
calculations and delivering results. This can
be realized by extending the stub with addi-
tional simulated software functionality which is
calling the real procedures and discarding the
results from it or storing them for further anal-
ysis, e.g. in a hash table.

The same technique can be used for func-
tions which could not be optimized and there-
fore is no need to be simulated.

4.2.3 Idealized Measurements

The stubs can also be used to simulate almost
ideal performance behavior of the CUS. This
is useful for a feasibility study or for verifying
the specified performance targets of third party
software, e.g. middleware and can be realized
by only using the capabilities of the simulated
software functionality without inserting other
functions as PSF or performance measurement
functions. This will tear down the cycles to
a minimum and therefore the “other” software
modules can use almost every resources in to-
tal. Of course, the operating system will also
contribute it is cost to the total load.

4.2.4 Load and Stress Tests

Another possibility is the opposite to the ide-
alized measurements. Here the system will be
stressed by adding additional performance bot-
tlenecks to evaluate the system behavior under
a high load. It can be realized by using a global
dynamic performance stub, e.g. a stub which
is using the globally visible functionality of the
CPU-PSF combined with a high priority. This

will increase the CPU usage and therefore will
stress the system. Depending on the software,
overload routines will be performed in such sit-
uations. So the behavior of the application on
the borderline can be examined and new bot-
tlenecks can be identified.

4.2.5 Hidden Bottlenecks Detection by
Zero Bound CUS

Hidden bottlenecks are bottlenecks which are
existing but can only be seen after removing
the current one. They are also reducing the
throughput but it does not count to the over-
all performance due to the stronger influence
of the first bottleneck. Specialists often “over
optimize” the software module which leads to
that the hidden bottleneck becomes critical [1].

The following additional techniques help in
detecting hidden bottlenecks. The CUS will
be optimized in a non realistic way by setting
the performance values of the PSF to zero. So
a new performance measurement will help to
make the next bottlenecks visible.

4.2.6 System Bounds

If all local optimizations do not lead to the re-
quired results or are too expensive, sometimes
a global optimization might be chosen, for in-
stance using a faster CPU or a bigger memory.
To check whether global restrictions are there
dynamic performance stubs can help. E.g. af-
ter evaluating several runs with different per-
formance parameters a chart can be drawn.
This can point to a system restriction, e.g. the
system starts swapping/paging due to a lack of
memory.

4.2.7 Global vs. Local Stubs

As can be seen in Figure 1 there are two differ-
ent occurrences of dynamic performance stubs.

First they can work locally which means to
stub a software unit. This procedure is handled
along the paper and will not be described more
in detail in this section.

The second way of using the dynamic perfor-
mance stubs is globally. Therefore a software

- 9 -

Dynamic Performance Stubs

application (module) has to be written which
will affect the whole system in a desired way
e.g. by generating CPU load.

As an example: a module will be created
which compares the current usage of the CPU
with a default value. If the current value is
less than the default, the module will use the
CPU, e.g. with the CPU-PSF and tries to ad-
just the usage by generating load. Otherwise
it will not do anything. As a result global con-
siderations can be realized. It can be checked
whether the throughput of the whole system is
still on a limit. E.g. if after a linear increase of
the CPU load by a global stub lead to a non-
linear increase of the runtime of the process to
be examined. This might be an indication that
the system throughput is too low to handle all
requests. Then an increase of the CPU power
might help. However, this might not be an
option in all projects, but also then this exam-
ination result helps in gaining a better under-
standing of the systems behavior and in conse-
quence of the possible performance problem.

Another possibility for the usage of a global
dynamic performance stub is to increase the
number of context switches. For this a soft-
ware module can be created which only wakes
up and goes back to sleep again. If it will only
sleep for a short time and is executed with
a high priority the system will do a context
switch. This module can be realized using the
CPU-PSF.

5 Advantages

As mentioned the dynamic performance stub
can be used for a cost-benefit analysis. This
will also lead to a balance between optimization
effort and the achievable gain in the system.
Of course a higher optimization of the software
module will also lead to a higher performance
within the complete system but the effort for
the additional gain in this case might be to big.
This approach can lead to a more gain-oriented
optimization. This point will end up in bet-
ter maintainable and structured code. General
drawbacks of performance improvements such

as a poor maintainability and badly structured
code is described in [18, 27]. Which can be
reduced by the presented approach.

Additionally, knowing the optimization ef-
fort can lead to results earlier, because some
possible improvements does not have to be
done due to system dependencies [1].

As described in Section 4.2.4 “load & stress”
tests are possible. This can also be used for
testing functions, e.g. overload routines under
“real” conditions because the CPU utilization
will be raised up by a global dynamic perfor-
mance stub module. As mentioned in Section
4.2.3 the similar methodology can also be used
for idealized measurements regarding the per-
formance behavior of the CUS.

The dynamic performance stub can be used
to identify hidden bottlenecks as described in
4.2.5.

6 Restrictions

The dynamic performance stub has also some
drawbacks which will be described in this sec-
tion. The first to mention is the danger of
wrong results of the initial performance mea-
surements. If this error happens all further re-
sults of the measurements using the stub can
also be wrong. This can lead to a lot of time
wasted in measuring, building and evaluating
the performance. As mentioned in [5] all re-
sults should be handled with care until they
are validated.

Also with proper initial measurements and a
proper stub setup the results can be mislead-
ing, e.g. because of the introduced overhead.
Therefore as already stated all results should
be handled with care.

Creating a dynamic performance stub means
effort which can require additional costs. The
gain of this method strongly depends on the
system, it is performance behavior and the ef-
fort to be spent for optimizations.

Large projects often take a lot of additional
effort for performance stubbing, each iteration
of stubbing one element requires a change of
parameters and the repetition of the build- and

- 10 -

Dynamic Performance Stubs

performance measurement process as well as
the evaluation.

Within the software life cycle the interfaces
and the messages of the software can change.
This means probably that a stub has to be
adapted after each of this changes.

There is a lot of additional effort as result of
measurement operations. However, using the
described method should decrease the overall
improvement effort especially on large software
systems.

7 Conclusion and Future
Work

In this paper a method for supporting per-
formance improvement operations has been
shown. Therefore the concept of dynamic per-
formance stubs has been introduced, which is
a mixture of the stubbing mechanism and sim-
ulation of performance behavior.

Using dynamic performance stubs following
advantages for performance improvements can
be achieved:

• The results of possible performance opti-
mizations can be estimated with an in-
creased confidence level, because a com-
plete program execution with a simulated
performance optimization can be achieved
before the optimization has been realized.
As a consequence a validated estimation of
a performance improvement can be given
before the effort of a concrete optimiza-
tion has been spent. This optimization ef-
fort can sometimes be several man months
instead of the effort for generating a per-
formance stub which in most cases can
be measured in hours. Since the bene-
fit of performance improvement can now
be determined, a valid cost-benefit analy-
sis for improvement operations can be cal-
culated, if the effort for each operation
has been estimated. So different candi-
dates for performance improvements can
be prioritized and such the effort of im-
provement can be spent on a section with
a big return on investment.

• Using dynamic performance stubs also the
necessary performance gain can be deter-
mined. Sometimes an improvement of e.g.
the reduction of the execution time of a
bottleneck to 50% does lead to the same
execution time for the whole application
as a reduction to 75%, because other com-
ponents will be new bottlenecks. So by
dynamic performance stubs the necessary
ratio of improvement operations can be de-
termined and in consequence an overengi-
neered performance improvement can be
avoided.

• Also the “hill climbing phenomena” can
be avoided. Usually, on mountains hiking
only the next peak can be seen in advance
and later higher hilltops on the way are
hidden. This usually happens with per-
formance bottlenecks too. If you have re-
duced one, the next bottleneck appears [1].
Here dynamic performance stubs can be
used to see the upcoming bottlenecks in
advance.

In this paper the basic concepts behind dy-
namic performance stubs and a method using
performance stubs in the area of performance
improvements has been sketched. However, the
concept and methodology has to elaborated in
the following points:

• The calibration functions have to be im-
plemented to reduce hardware dependency
within one platform. Especially some
hardware related topics e.g. CPU throt-
tling has to be elaborated.

• The remaining PSF s have to be imple-
mented, especially the I/O-PSF has to be
elaborated. Also several additional sim-
ulation parameters have to studied and
simulated, e.g. data/instruction TLBs, L1
Instruction Caches, branch predictions or
paging/swapping as well as pipelining ef-
fects.

• PSF s have to be implemented for differ-
ent platforms to realize hardware indepen-

- 11 -

Dynamic Performance Stubs

dence. Also multiprocessor architectures
have to be taken into account.

• The combination of different PSF s has to
be examined to simulate realistic system
behavior.

• The methodology of the usage of perfor-
mance stubs has to be elaborated more in
detail and to be verified by different case
studies. Especially a method how to real-
ize decomposition of performance targets
to smaller components has to be created.

• A methodology for stubbing non-
deterministic functions has to be
elaborated as well as the evaluation
techniques, e.g. statistical evaluations of
the performance measurement results.

• A wider range of evaluation techniques
and the resulting conclusions, e.g. iden-
tifying changeovers from system bounds
should be studied.

• The loss of precision for performance mea-
surements using PSF compared with real-
istic optimizations has to be examined.

• The possibility to support the software de-
velopment process by using dynamic per-
formance stubs has to be studied.

• All functions have to be supported by a
toolset, which has to be implemented.

All described open points will be examined
in the ongoing research project.

8 Acknowledgment

This research is granted by Nokia Siemens Net-
works. The authors would like to thank the
UMTS group, especially Dr. Rudolf Bauer,
Helmut Voggenauer and Steffen Wagner as rep-
resentatives for the excellent support and con-
tributions to this research project.

For careful reading and providing valuable
comments on draft versions of this paper we

would like to thank Prof. Dr. Stefan Hah-
ndel, Marinus Luegmair, Dr. Alexander Ost
and Fabian Wohlschläger.

References

[1] S. McConnell. Code complete: A practi-
cal handbook of software construction. Mi-
crosoft Press, Redmond, WA, USA, 2 edi-
tion, 2004.

[2] G. Marin and J. Mellor-Crummey. Appli-
cation Insight Through Performance Mod-
eling. In 26th IEEE International Perfor-
mance Computing and Communications
Conference (IPCCC’07), New Orleans,
April 2007.

[3] D. J. Reifer. The smart stub as a software
management tool. SIGSOFT Softw. Eng.
Notes, 1(2):4–8, 1976.

[4] Satish Chandra Gupta. Need for speed
– eliminating performance bottlenecks.
IBM (online): http://www-128.ibm.com
/developerworks/rational/library/0
5/1004 gupta/index.html, 2007. [April
25, 2007].

[5] R. Jain. The art of computer systems per-
formance analysis. Wiley and sons, Inc.,
1991.

[6] J. J. Marciniak. Encyclopedia of Software
Engineering. John Wiley & Sons Inc, 2
edition, 2002.

[7] P. J. Fortier and H. E. Michel. Computer
Systems Performance Evaluation and Pre-
diction, volume 1. Digital Press, Burling-
ton, 2003.

[8] D. J. Lilja. Measuring Computer Perfor-
mance: a practioner’s guide. Cambridge
University Press, New York, 2000.

[9] A. Schmietendorf and A. Scholz. As-
pects of Performance Engineering - An
Overview, pages IX – XII. Springer-Verlag
Berlin, Heidelberg, 2001.

- 12 -

Dynamic Performance Stubs

[10] A. Bertolino and E. Marchetti. Software
Engineering: The Development Process -
A Brief Essay on Software Testing, vol-
ume 1, chapter 7, pages 393–411. John
Wiley & Sons, Inc., 3 edition, 2005.

[11] P. Liggesmeyer. Software-Qualität :
Testen, Analysieren und Verifizieren von
Software. Spektrum Akademischer Verlag
GmbH, Berlin, 2002.

[12] I. Sommerville. Software Engineering.
Addison-Wesley, 6 edition, 2001. german
redaction.

[13] N. H. Gunther. The practical performance
analyst. McGraw-Hill Education, 1998.

[14] C. Ghezzi, M. Jazayeri, and D. Mandri-
oli. Fundamentals of Software Engineer-
ing. Prentice Hall, 2 edition, 2003.

[15] GNU gprof - The GNU Profiler. online:
http://gnu.org/software/binutils/m
anual/gprof-2.9.1/html mono/gprof.h
tml, 2007. [April 16, 2007].

[16] Linux Trace Toolkit. online: http://www
.opersys.com/LTT, 2007. [April 16, 2007].

[17] OProfile - A System Profiler for Linux.
online: http://oprofile.sourceforge.n
et, 2007. [April 16, 2007].

[18] F. Agner. 1. Optimizing software in
C++: An optimization guide for Win-
dows, Linux and Mac platforms. on-
line: http://www.agner.org/optimize,
2006. [last update: July 5, 2006].

[19] Optimize Options - Using the GNU
Compiler Collection (GCC). online:
http://gcc.gnu.org/onlinedocs/gcc
/Optimize-Options.html, 2007. [April
20, 2007].

[20] J. Hughes. Performance Engineering
throughout the System Life Cycle. Tech-
nical report, SES Inc., 1998. [April 04,
2007].

[21] R. Srinivasan and O. Lubeck. Mon-
teSim: A Monte Carlo Performance Model
for In-order Microarchitectures. ACM
SIGARCH Computer Architectur News,
33(5):75–80, December 2005.

[22] Intel Corporation. IA-32 Intel® Architec-
ture Software Developer´s Manual - Sys-
tem Programming Guide, Part I, June
2006.

[23] C. Siemers, M. Eckert, and A. Lauchner.
Prozessor-Technologie. tecchannel com-
pact, (3/04), 2004.

[24] W. Stallings. Computer Organization &
Architecture: Designing for Performance.
Prentice-Hall, 6 edition, 2003.

[25] M. E. Lee. Optimization of Computer Pro-
grams in C. online: http://www.prism.u
vsq.fr/~cedb/local copies/lee.html,
1999. April 25, 2007.

[26] Robert Love. Linux-Kernel-Handbuch.
Addison-Wesley Verlag, 2005.

[27] J. M. Newcomer. Optimiza-
tion: Your Worst Enemy. online:
http://www.codeproject.com/tips/o
ptimizationenemy.asp?print=true, 13
August 2000. [May 02, 2007].

- 13 -

Biograghy

Dipl.-Ing. (FH) Peter Trapp is a research assistant at the Institut
für Angewandte Forschung of the Fachhochschule Ingolstadt. His
research interests are in the area of performance measurements
and analysis and in computer security.
Peter Trapp was born in 1978 at Neuendettelsau, Germany. After
his graduate in Eletrical Engineering and Information Technology
at the Fachhochschule Ingolstadt he was employed at BMW in the
bluetooth handsfree set development department.

Dr. Christian Facchi is Professor for SW Engineering, Distributed
Systems and Mathematics at the Fachhochschule Ingolstadt, Ger-
many since 2004. His major research interests are in the area of
performance analysis and modeling, embedded systems, testing of
Software and formal description techniques.
Dr. Facchi was born in 1964 at Munich, Germany. He holds a
doctoral degree and a diploma degree from the Technische Uni-
versität München, Germany both for Computer Science. Before
he changed to the Fachhochschule Ingolstadt he has been employed
at Siemens in the Mobile Phones development department for 9
years. During his employment at Siemens Mobile Phones he was
the head of worldwide strategy for SW development environments.

Impressum

Herausgeber
Der Präsident der
Fachhochschule Ingolstadt

Esplanade 10
85049 Ingolstadt
Telefon: 08 41 / 93 48 - 0
Fax: 08 41 / 93 48 - 200
E-Mail: info@fh-ingolstadt.de

Druck
Hausdruck

Die Beiträge aus der FH-Reihe
"Arbeitsberichte/ Working Papers"
erscheinen in unregelmäßigen Abständen.

Alle Rechte, insbesondere das Recht der
Vervielfältigung und Verbreitung sowie der
Übersetzung vorbehalten. Nachdruck, auch
auszugsweise, ist gegen Quellenangabe
gestattet, Belegexemplar erbeten.

Internet
Dieses Thema können Sie, ebenso wie die
früheren Veröffentlichungen aus der FH-Reihe
"Arbeitsberichte - Working Papers", unter der
Adresse www.fh-ingolstadt.de nachlesen.

ISSN 1612-6483

