
Working Papers
Arbeitsberichte

Enhancing Domain Modelling
with Easy to Understand

Business Rules

Christian Bacherler, Christian Facchi,
Hans-Michael Windisch

Enhancing Domain Modelling
with Easy to Understand

Business Rules

Christian Bacherler, Christian Facchi,
Hans-Michael Windisch

Arbeitsberichte
Working Papers

Heft Nr. 19 aus der Reihe
„Arbeitsberichte – Working Papers“

ISSN 1612-6483
Ingolstadt, im November 2010

Enhancing Domain Modelling with Easy to
Understand Business Rules ?

Christian Bacherler, Christian Facchi and Hans-Michael Windisch
{christian.bacherler | christian.facchi |

hans-michael.windisch}@haw-ingolstadt.de

University of Applied Sciences Ingolstadt
Esplanade 10

D-85049 Ingolstadt

Abstract. The model driven software development (MDSD) paradigm
is gaining momentum in developing extensive business software appli-
cations. With MDSD it can be carried out a significant contribution
towards the key factors of success which are flexibility and adherence
to delivery dates as well as efficient maintenance and adaptability. With
AtomsPro that is introduced here we consequently integrate aspects of
domain modelling and software architecture as well as clear and under-
standable means to enable domain experts to take an active role in the
software development process. The challenging aim is to increase the
overall ratio of code generated in the development process of enterprise
applications by at the same time preserving abilities for efficient mainte-
nance. Hence, we have chosen a fruitful cooperation with several involved
project partners.

1 Introduction

Preserving an enterprise’s key factor for competitiveness on the global markets
means that business processes and business rules have to be adopted quickly
into their information systems. In general, information systems are the oper-
ational manifestation of the business knowledge of an enterprise. Behavioural
descriptions, business rules paired with structural schemas are a significant part
of that knowledge [1] and are mostly specified using natural language descrip-
tions supported by images. Due to market demands, a proper degree of flexibility
in adopting changes of the business knowledge is obligatory in a business envi-
ronment where rules are likely to change frequently and rapidly [2]. For a cou-
ple of decades enterprises face a trend towards the migration of their business
knowledge to information systems which also means that the business knowl-
edge originators, domain experts, are getting more and more dependent on IT

? Funded by the German Ministry of Economy and Technology due to a decision of the
German Federal Parliament. In German: ”Gefoerdert vom Bundesministerium fuer
Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages”.
ZIM-Project with Number KF2122301SS8

experts like software architects and developers. A counterforce to the common
trend towards the unintended migration of the business knowledge into IT de-
partments is to enable domain experts to specify requirements. This shall be
achieved by enabling domain experts to specify requirements on their own using
a language that is not too technical [2] by at the same time being sufficiently
formal to grant machine based aid. Otherwise the latent danger of removing
domain experts from their central position as domain knowledge generators and
holders is imminently given. The gap between the requirements specification doc-
uments and the implementation of those requirements widens the more complex
an enterprise application becomes. The constant evolution of existing systems
bears the danger of an inadequate design, which tends to be normal under the
common pressure of software development projects. This becomes even more
critical in large and complex enterprise applications. If the complexity becomes
unmanageable, the system has to be cost-intensively rebuilt from scratch. To
tackle the roots of this problem was the goal of researchers and tool vendors
for the last decade. However, the major contribution towards modern develop-
ment paradigms like Model-Driven Software Development (MDSD) [6] we see in
mechanisms to also allow formal specification of business rules next to structural
schemas usually given by class diagrams [5]. In MDSD, we see the most promis-
ing candidate for overcoming the complexity of large enterprise applications at
design time and later evolution. The reason is that on the one hand by using
graphical modelling domain experts preserve their ability to specify significant
parts of the software systems theirselves and thus remain in the role of domain
knowledge generators and holders. On the other hand if being sufficiently for-
mal in building up abstract system specifications, the degree of code generation
can be raised significantly [40]. Thus, employing mechanisms to support domain
experts utilizing MDSD in a structured and clear manner is the focus of this
collaborative work. However, the key factors for successfully allowing domain
experts to apply MDSD we see in providing modelling methods that are easy to
learn and use [3,4]. These modelling methods have to be expressive enough to
define an application’s structure as well as its behavioural aspects. Additionally,
means to define guides for the user’s interaction with the application is another
success factor. We achieve this with the aid of selected graphical UML model
types as well as a proprietary builder for making up graphical user interfaces
(GUI). A key enabler for the mentioned aspects is a proper tool support, which
we bring up with the AtomsPro-Tool (see Section 4). AtomsPro is the project
frame of this work and aims at developing a new method for the cost efficient de-
velopment of maintainable distributed applications. However, it is necessary to
enhance graphical models, especially UML class models, with additional seman-
tics to overcome the needed specification degree for automated code generation.
Hence, UML class models are used to specify structural schemas of an applica-
tion which define parts of the business concepts and structure. Business concepts
can be seen as the basic vocabulary for defining business rules and if being suffi-
ciently formal the cornerstone for automatic code generation is laid. The Object
Modelling Group (OMG) tries to answer this by introducing a textual general-

purpose language for business rules, the Object Constraint Language (OCL [4]).
OCL is included in the UML 2.0 specification and provides a formal basis for
specifying business rules upon UML class models. Work done in [41] shows that
OCL is able to cover a variety of problem domains concerned with business rules
and structural schemas. However, Halpin [7] et. al. argue that OCL is too tech-
nical to be used by most domain experts who are used to work with natural
language specifications. From a practical viewpoint the need for a language that
caters to domain experts and not only to programmers is imminently given.
Thus, we propose the AtomsPro Rule Integration Language (APRIL, see Sec-
tion 5) as an integral part of AtomsPro, which is a new language for formally
specifying business constraints in a natural language like syntax that may be
suitable for domain experts. It is enhanced by language constructs that ease the
use of complex common business constraints elaborated and introduced in [1, 7,
9]. Statements made in APRIL can be compiled to OCL.

Another key factor for successfully maintaining and evolving large enterprise
applications is to provide means for consistently supporting aspects of their archi-
tecture and deployment as both are depicting the glue between the application’s
software code and the actual system they are running on. In terms of defining
an application’s architecture substantial work has been done e.g. [8, 10, 11, 12]
to formally specify different kinds of architectural issues of applications that are
known as architecture definition languages (ADLs). Next to textual ADL ap-
proaches there exist graphical UML based ADLs that are more favourable in
practice as they base on well founded and well structured modelling methods as
well as a wide supporting tool landscape. With AtomsPro we support graphi-
cal architecture and deployment modelling. Especially deployment modelling is
pretty much neglected in the currently existing state of the art ADLs e.g. like
[8]. AtomsPro consequentially integrates graphical domain-, GUI-, architecture-,
and deployment modelling as well as textual business rule specification. Hence,
we enable a high ratio of automated code generation making the work of software
developers more efficient. In order to achieve our goals the workload is tackled
collaboratively by the project partners eMundo and the University of Applied
Sciences Ingolstadt.

This paper is structured as follows. In Section 2 a brief overview of research
environment of AtomsPro is given. Related work is introduced in Section 3.
APRIL, presented in Section 5, is a subproject of the AtomsPro project, which
is presented in Section 4. Finally, Section 6 presents some conclusions and future
work. In the Appendix the concepts of the APRIL language are described. Hence,
the Appendix is structured as follows: Part A contains the APRIL-syntax in
EBNF. The Sections B to E handle semantic issues in a semi formal way. They
depict the first steps towards an exhaustive and formal definition of APRIL.

2 Research Environment

In our project we have chosen a fruitful cooperation with several involved project
partners. The main target has been to achieve a real product or at least an in-

novative prototype, which is strongly based on research results. So this can be
summarized as research in applied sciences. We have involved different partners
we need for reaching that goal. The whole project has been founded by the Ger-
man government (BMfWi, Bundesministerium fuer Wirtschaft und Technolo-
gie) in the research program ZIM (Zentrales Innovationsprogramm Mittelstand)
under the project number KF2122301SS8. This program connects smaller and
midsize companies with research institutes to develop innovative products with
a high business value. To achieve that goal the partners are tied together in an
integrated project plan.

2.1 eMundo

eMundo is the industry partner of the project. eMundo develops distributed
business software systems for their clients where standard software, e.g. standard
ERP systems, cannot be applied. The applications eMundo delivers to their
clients range from Web-based information systems to resource planning and
scheduling systems, typically for a large number of users (10-10000). Nowadays
software needs to fit into the client’s IT landscape and -infrastructure. To achieve
this, for every project the software development process as well as the software
architecture are individually tailored to meet the client’s regulations. Not only
since companies are relying on outsourcing to develop software the software
development market is getting more and more competitive. Thus, a major goal
for companies like eMundo is to reduce software development costs while at the
same time preserving software quality. From the client’s perspective maintainable
code is a very important requirement since most of the total expenditure for an
application are spent for maintenance, i.e. bug fixing and the implementation of
new features.

2.2 University of Applied Sciences Ingolstadt

The University of Applied Sciences of Ingolstadt has been founded in 1994 as a
teaching and research institution to support regional companies. With a strongly
increasing staff, today 3000 students are taught. In the research institute there
are currently 40 researchers, which are all founded by companies or by individual
government founds. Mainly the language for defining business rules (APRIL) will
be driven by the University of Ingolstadt.

2.3 De Montfort University

To cover also research topics which might be in the area of basic research, the
University of Ingolstadt has an established research cooperation with the De
Montfort University in Leicester, UK. In our area, we are cooperating with the
Software Technology Research Laboratory (STRL) under the head of Hussein
Zedan. The STRL is a pure research institute within the De Montfort University.

3 Related Work

Work in the context of model driven software development (MDSD) is focussing
towards the integration of domain experts into the softwar-development, software-
maintenance and software-evolution process [6]. This is done by means that allow
expressing business logic in a way domain experts are used to and by at the same
time being sufficiently formal to grant automated code generation. Strong em-
phasis is laid upon specification methods that allow to express business logic
as abstract as possible by at the same time keeping the needed detail level for
a software implementation low. Another highly recommended issue is to reduce
the overall amount of detail that a member of a development team has to be con-
cerned with. Separation of concerns [20] (SoC) helps to ensure to divide concerns
of different stakeholders e.g. a software architect manages the morphology of the
software application itself whereas a domain expert deals with business rules.
Recomposing the different views is no longer a task for human developers only
but more and more for state of the art tools that comply to the MDSD paradigm.
Established proprietary software development tools allow generating parts of an
application. Formal models, mostly specified in UML, are required for an auto-
mated code generation. However, tools supporting MDSD can be divided into
two groups. The first group is supporting the model driven architecture (MDA
[29]) paradigm, which is a methodological implementation of MDSD and elab-
orated by the OMG. From the scope of AtomsPro the MDA paradigm requires
too many steps of indirection to come to the result which shall be executable
platform specific software. The second group does not obligate such intermediate
model transformation steps. Members of that group claim to support all degrees
of freedom of the MDSD paradigm. Hence, they are the main competitors to
AtomsPro and can be subdivided furthermore regarding the kind of notation
they support. On the one hand, there are tools that support graphical nota-
tion e.g. [28] and on the other hand, there are tools that support pure textual
notation e.g. [26, 27]. The last group mentioned afore allows to define propri-
etary languages tailor-made for a domain’s needs and also significantly supports
the construction of a proper tool support for that language. That is why they
are also called language workbenches [19]. Models, which are actually textual
code in the user-defined domain specific language, can then be translated into
a platform specific form e.g Java by a user defined compiler whose preparation
is then again aided by the language workbench. AtomsPro does not support
specifying user defined textual languages this way but makes use of a language
workbench to define a business rule language that is like natural language and
compliable to OCL. However, our focus is on graphical modelling and so the
highly relevant related work is done amongst tools like Eclipse Open Architec-
ture Ware [31], ObjectIF [30] and AndroMDA [32]. MDSD-tools basically allow
to define additional semantics to an existing or to be defined meta model which
is the basis for the desired domain specific modelling concepts. These semantics
mostly appear as code templates of the target language and serve as input for
a generator module that also consumes a certain domain model in order to cast
its logic into a target artefact, which is often some kind of software application

code. However, the feature landscape amongst MDSD-tools that provides the
needed functionality in a user friendly way can be regarded as heterogeneous.
So for example some common IDE mechanisms like automatic code completion,
type checking or even debugging are often not considered to a satisfying extend.
The most significant shortcomings are in the area of considering architectural
structures for the generated application. If there is a need to apply individual
architectural schemas to a generated application, tremendous changes in the
generator have to be conducted whether the tool is open enough for allowing
changes at all. A focus of AtomsPro is to cater for architectural structuring of
the generated application. Hence, another significant aspect is to provide means
to specify the architecture of an enterprise application. Significant work has taken
place with [8, 42] to specify certain architecture description languages (ADLs)
to overcome the complexity of formally specifying highly modularized applica-
tion components that have to be glued together. Typically, these approaches are
to be divided into two groups. One group pursues the way to textually specify
certain architectural issues and the other group does so by providing graphical
forms of notation. Specifications made in any of the ADLs commonly serve as
additional input for generating platform specific code for an enterprise appli-
cation in terms of the logical structuring. Another dimension for distinguishing
ADLs is the purpose for which they are designed. Thus, most ADLs addition-
ally are to be divided into either general-purpose ADLs (e.g. UML profiles for
architecture specifications [43] or ACME [8]) or domain specific ADLs (e.g. for
embedded software for avionics). Nevertheless, almost all of the ADLs operate
on a basic subset of modelling components, which are components, connectors,
configuration blocks and constraints. The instances of those elements may than
be composed utilizing the concrete syntax of the ADL for a certain architec-
ture description. In an example scenario components may represent client and
server applications, connectors can be seen as procedure calls, event broadcasts
or database connections. Configuration blocks contain metadata on components
and connectors. The UML can also be counted to the general purpose ADLs as
it provides extension points, UML profiles [44], to tailor notation concepts for
defining architecture models individually for a project’s needs. Although it is
often argued that the UML is too overloaded for describing architectures as it
does not explicitly cater for the typical component-interface-connector focus it
indeed enjoys a broad field of usage for architectural purposes. The reason for
that may be sought in a widespread and mature tool support and the fact that
many developers and architects are familiar with the UML. This motivated [18]
to develop a transformation scheme from the textual ACME to a UML-based
notation. Some research aspects extend the scope of ADLs. They are on the one
hand dealing with tool based analysis and optimization of architecture specifi-
cations that concern non-functional requirements [10, 17] and on the other hand
focus on supporting the architectural evolution as a part of a tool based software
development process [11, 13, 14, 15, 16]. With AtomsPro we do not yet cover the
issues of both groups. Despite the fact that the methodological and tool based
aid around ADLs seems mature they do not claim a leading position in the

industrial practice. One reason might be that issues for describing deployment
aspects have not found their way into the languages’ concepts. AtomsPro closes
this gap.

With APRIL (see Section 5) we translate formal business rule statements
that come close to natural language into OCL. Approaches that deal with the
formal specification of business rules by means of natural language focus on
utilizing pure natural language e.g. [45, 46]. However, all the approaches inves-
tigated are either very extensive and by far non-trivial e.g. OMG’s Semantics
of Business Vocabulary and Business Rules [45] (SBVR) or have to be imple-
mented using complicated probabilistic methods that are only able to estimate
a statements formal semantics e.g. [46]. However, they are neither as easy to
learn and use for business people nor as accurate as it is necessary to aid code
generation. However, they roughly are to be divided into three major fields. One
group providing support for easier ways to formulate OCL expressions is done
in [47,48,52]. A second group focuses on paraphrasing OCL- expressions with
natural language [47,51]. Thirdly [46] is a representative of a group that maps
natural language to database languages (SQL[52]) that cover similar aspects in
the relational world like OCL does in the object oriented world. In [47] a method
is introduced to annotate rules graphically. OCL-constraints are generated with
the help of predefined constraint design patterns which provide the semantics at
the same time. [48] picks up this idea and tries to systematically simplify OCL
constraints that have been generated based on the patterns. Their intention is to
make constraint statements shorter by preserving the semantics. Doing so OCL
statements shall become more readable. [52] discusses methods to specify design
patterns. This group of approaches bears two major problems. First there has to
be a huge variety of design patterns for all different kinds of constraints arising
in practice of enterprise business that are far away from being trivial. Second, it
lacks support for defining new complex constrains which is the main focus of our
approach. The group that focuses on paraphrasing OCL constraints directly with
natural language on the one hand introduced by [51] and on the other hand with
[53] the standardized SBVR is utilized as an intermediate translation step. The
reason why [51] comes into consideration for discussion is because the generated
English is very good. Although from our point of view this approach does not
primarily focus on domain experts but on programmers who are given an im-
mediate semantic feedback upon the specified OCL statements. Why generated
specifications (proposed in [51]) are critical has the same reason as [53] which
approaches intents to give the domain expert immediate response on the status
quo of the implementation. A flaw we see on this is, that it does not pull the
domain expert from his peripheral position into the implementation process as
it is propagated with methods where DSLs [54] contribute to MDSD. Another is
a latent danger that communication between domain experts and programmers
becomes unidirectional. Programmers could refer to the generated specification
if they are asked to give a status report. What might be convenient for the pro-
grammers but unreasonable for domain experts who would have to read through
hundreds of pages of generated text. Making all aspects of natural language suffi-

ciently formal for programming purposes is a trade-off we consider too expensive.
A third group from the field of artificial intelligence pursues approaches towards
machine based learning in order to provide a basis for transforming natural lan-
guage into formal languages [55,56,57,58]. Another highly interesting approach
in that group comes up with [46]. Giordiano and Moschitti describe a method
from the field of artificial intelligence to combine natural language processing [59]
and probabilistic methods based on [55,56,57,58] to transform natural language
questions to SQL queries. They use different special heuristics with training ex-
amples to automatically map syntactical structures from template like natural
language questions to those of SQL queries. They are measuring the effective-
ness of each mapping algorithm by using them in Support Vector Machines [60]
in order to select the correctly mapped structures of pairs of natural language
questions and SQL queries. This shows that the role of mapping syntactical tree
fragments between a natural and a synthetic language is an important step in
gathering the relational semantics of two languages. The approach of Giordani
and Moschitti shows that from our point of view tremendous effort has to be
taken to translate natural language into an artificial language. For automatically
gathering semantics they generate round about 72 wrong structural tree pairs
to get one right out of it which is then useful for translating only one type of
natural language question. This impressively shows that such translation tasks
using syntactic structures combined with statistical methods can only be tack-
led with a considerable trade-off. Translation problems in this area are at least
known since [61]. Another approach [47] for supporting domain experts in tex-
tual requirements engineering is to provide mechanisms for consistency checking
with the help of natural language processing. Koerner et. al. propose a tool for
checking textual requirements documents. The checks are based on onthologies
providing the semantic fundament for reasoning about linguistic defects of the
natural language requirements documents. The authors argue that the tool is
able to point out to ambiguous and imprecise formulations and give propositions
for improvements based on information gathered from external models (ontholo-
gies). Despite the fact that this approach is not able to generate formal business
rules at the moment, it is peripherally competing with APRIL as it may pro-
vide domain experts with means to precisely (but still not yet formal) express
business rules in natural language.

4 AtomsPro

In this section we want to give a brief overview of the concepts of AtomsPro.We
also want give a glimpse of its effective usage.

4.1 Definition of AtomsPro

The project aims at developing a new method for the cost efficient development
of maintainable distributed applications. The key concept of the approach is to
save development time through the use of predefined software components as

Fig. 1. AtomsPro concept

well as maximizing code generation. The starting point for the code generation
is a UML[5]-based high level model of the application consisting of various views
(see Figure 1). The Use Case Model shows how an application’s functionality
can be described in terms of use cases [38] and actors. For each use case defined
in the Use Case Model an Activity Model - consisting of UML activity diagrams
- can be used to specify its flow of control as well as the objects associated with
it. Objects are created from classes which may be defined in the Class Model.
It materializes through a number of UML class diagrams where classes may be
defined for persistent and transient objects, respectively. As many applications
provide some kind of user interface a User Interface (UI) Model can be used to
specify the dialogs that may be used to interact with users as use cases are be-
ing performed. In order to maximize the expressiveness of UI models dialogs and
dialog controls can be associated with (data) objects based on the types defined
in the class model through query expressions specified in A4L. A4L (AtomsPro
4th generation language) is an implicitly typed object-based language that has
been devised to support the implementation of business logic with minimal ef-
fort. This is achieved through a number of language features such as integrated
application model access and navigation, implicit elicitation of data types, sup-
port for querying application data at runtime and the integration of a language
to define business constraints (see Section 5). Furthermore, an activity model
must be specified for each dialog to indicate how the dialog’s events (e.g. button
clicks) should be handled. Consequently, these event-handling models enhance a

use case’s overall activity model, as dialogs are included in use case executions
- typically through predefined dialog open activities. Once the specification has
reached a certain maturity, it is the transformer’s task to generate source code
from the application specification. Before this can be done the developer needs
to choose a software architecture specification to base the generation process
on. The software architecture specification uses a software architecture model to
specify which architecture artefacts (e.g. a Data Transfer Object) are used as
building blocks for the software and how each artefact can be created from the
application model using a particular template. An AtomsPro template consists
of two views - an output view which is responsible for creating the output lines of
the resulting file, and a logic view which uses A4L code to prepare the variables
which are being referred to in the output view. Each template is parameterized
through an A4L query which is formulated over the application specification
to provide the specification elements (e.g. all persistent classes with ’persistent’
= true) code should be generated for. Finally, a number of deployment models
specify how the application should be deployed in the various development stages
and environments, e.g. development, system test, production. During source code
generation the existing manually written code is preserved. Once the transformer
has completed, the typical code-build-deploy-test cycle can be performed by each
developer resulting in changes to the manual code as well as the specification
model. In the latter case an incremental generation step may be requested by
the developer to reflect model changes on source code level.

4.2 Towards a methodology for the efficient use of AtomsPro

AtomsPro not only aims at providing techniques and tool support for the model-
based generation of source code for a freely definable application architecture.
It also supports the standard phase cycle of common software development pro-
cesses sketched in Figure 1.

– During analysis phase AtomsPro supports a rapid development approach by
providing an architecture model called ”simulation”. If chosen, this model
generates code to enable the local standalone execution of the application
which greatly helps to elicit requirements together with other stakeholders.
Use case modelling is used to describe the application’s functionality. Each
use case will be further detailed by an associated activity model, which can
be further decomposed to handle complex use case flows. The data needed
for the use cases to be performed can be specified by defining a class model.
Then, a user interface may be designed using a UI builder to specify the user
interface model of the application. UI event handling and data binding can
both be specified with little effort using A4L code. Based on the aforemen-
tioned models the AtomsPro IDE is capable of a simulation run showing the
application in its prototype state. More functionality may be added, e.g. by
implementing class model operations or queries in A4L.

– Once the application specification has reached a certain maturity, a differ-
ent architecture model may be chosen to start with the actual development

(phases design and implementation). The architecture model chosen will im-
port new model properties (e.g. persistent for classes) which have to be set
accordingly, as they are required by the code generation and the templates
it relies on. The A4L code developed so far may be kept (A4L is by default
translated into native Java code) or be translated into the target language
(currently only Java is supported). From now on, the model-transform-code-
build-deploy-test cycle

5 APRIL

Authors in [1,7] argue that there is a need to substitute the pure natural language
business rule notation by a formal language that is non-ambiguous and able to
contribute to methods of MDSD. The other side of the medal is that this ben-
efit is bought at the price of clarity suspending non-technical domain experts
from the software creation process [23]. Major points where criticism towards
formal languages like OCL is put on is firstly that its statements quickly become
cryptic. This effect gets even emphasized while attempting to express inherently
complex and/or extensive business rules. And secondly, handcrafting business
rules in a formal textual language (OCL) is time consuming and error prone
as the user has to express the underlying semantics by using the exact syntax.
Relegating to the work done in [33] that last point can be fought against arguing
that if a powerful integrated development environment (IDE) is provided com-
plexity effects of the language itself do have a weaker impact. Hence, our work
is mainly motivated to provide a clear formal language supported by a proper
IDE enriched with state of the art features allowing to specify business rules
that are understandable, usable and maintainable by non-technical people. An
additional challenge may be to elaborate and combine natural language support
with state of the art IDE features. Thus, we propose APRIL (AtomsPro Rule
Integration Language), a formal declarative language for business rules. APRIL’s
syntax is based on natural language concepts that derive from predicate logic
and operations on sets as well as common business constraints [25]. The aim is
to enhance UML class models with additional semantics that can be understood
by domain experts with weak technical background. The semantics of APRIL
is underpinned by OCL. APRIL-statements are expressed in structured natural
language and can be compiled into OCL expressions. Then they can be processed
further by existing engines e.g. [34, 35, 36]. We seek to achieve a gain in under-
standability in the process of formal requirements specification with concepts
that are known from other formal languages combined with new concepts based
on natural language. First is the concept of decomposition of business rules into
simpler entities. Means for that are package building, easy and clear definition
of sub expressions (called Definitions in APRIL) and intra-rule variables. Sec-
ondly, by allowing the use of mixfix notation at certain points, possibilities to
form statements that are pretty close to natural language are offered. Thirdly,
we use a type system that is similar to that of OCL which supports APRIL’s
static typing making it easier to support semantic checks within the IDE. In the

following a brief overview of the syntactical concepts of APRIL and its project
environment is given.

5.1 Basic Concepts of APRIL

Every APRIL expression is based on a UML class model. As mentioned earlier
APRIL is based on predicate logic and operations on sets of objects which are in-
stances of classes. Selecting sets is done similarly to OCL by stating a navigation
along related classes in the associated UML model. For the example presented
with respect to Figure 2 we assume that the current context of the rule is an
object of type Customer, then:

cards.transactions

will collect all transaction objects that can be reached from the customer object
given by navigating the associations Customer to cards and CustomerCard to
transactions, respectively as a set. Using the dot-notation a flattened set of ob-
jects with type Transaction is returned and not a set of sets. APRIL also allows to
abbreviate any navigation between classes by only stating the target role name. A
navigation can only be abbreviated if the entire path is non-ambiguous and there
are no class attributes involved. Path targets are specified with the role name of
the association connected to the target class. The amount of matching path de-
scriptions can be reduced drastically if roles get named with a model-wide unique
identifier. For defining sub sets, any set within the navigation definition can be
reduced by a logical expression. The next example shows a selection yielding a
set of objects of type Transaction in cards.transactions where the value of the
attribute amount is greater than 100. It reduces the set of Transaction-objects
by assuming Customer as context. Note the for the introductory examples the
long navigation versions are used:

each transaction in cards.transactions where
amount > 100

A valid business scenario for this explanatory rule may be to find out which
transactions are profitable. Going further in the demonstration of predicate logic
expressions in APRIL the universal- and existential-quantification returning a
truth value in contrast to the upper examples look like the following. The busi-
ness rule: ”All transactions are required to have an amount greater than 100”
can be translated to:

every transaction in cards.transactions
satisfies that
amount > 100

The universal-quantification yields true if for all objects of type Transaction
in cards.transactions: the value of the attribute amount is greater than 100
holds. In contrast the existential quantification given below yields true if there is
at least one object of type Transaction in cards.transactions satisfying that
the value of the attribute amount is greater than 100.

at least one transaction in cards.transactions
satisfies that amount > 100

Fig. 2. Bank Customer Example

APRIL also provides means to optionally make the syntax of functions with
iterators more convenient. E.g. for reducing every transaction in transactions

satisfies that <exp> to the simpler form of every transaction satisfies

that <exp> APRIL uses the following rules:

1. Given a role-naming convention, which says that association ends shall only
be named with nouns and association ends with cardinality ”many” shall be
named in plural form, the syntax based inference rule is as follows:

A function e.g. every transaction satisfies that <exp(transaction)>

shall be expanded to every transaction in transactions satisfies that

<exp(transaction)>.

– Convert the name of the iterator variable into the plural form usually
done by the plural-s : plural(transaction) = transactions. The plural-s
building rule is a standard convention in English. Exceptions of that
rule can be handled with a singular-to-plural mapping table.

– Try to resolve the superset with plural(transaction) by utilizing the
navigation abbreviation rule mentioned earlier.

2. If this algorithm is used in a Definition the parameter names are used for
resolution before the role names. Generally a Definition inherits its context
from the Rule it is used in.

5.2 Rule in APRIL

A rule in APRIL is the frame for the specification of business logic and is roughly
divided into three sections. First is the header section where name and context
are defined. The header section is followed by the actual business rule statement
that always yields a truth value. The third section separated by the keyword with

is for Local Variable Definitions (see Section 5.5). So for example the business
rule: ”In Germany wealthy senior customers don’t have to pay transaction fees
for their outgoing transactions to accounts of foreign banks.” can be translated
into: (see also Figure 2)

Invariant NoFeesForGermanSeniors concerns Bank:
every customer in WealthyMaleSeniorGermans satisfies that
the customer donesnt have to pay fees for

transactions to accounts of foreign banks
with
WealthyMaleSeniorGermans is defined as
wealthy male senior owners in Germany .

Starting from the explicitly stated context Bank (indicated by the concerns key-
word) the universal quantification function every <element> in <set> satisfies

that <statement> is used to check if the embodied statement holds for every
single customer element. It is mandatory that statements made in the body of
the Rule itself yield a truth-value. Note that the parameter transactions de-
picts the optional short form of customer.cards.transactions. However, it
may be noticed that the statement defined is untypical for a programming lan-
guage as it is read pretty much like natural language. The key enabler here is the
use of mixfix operation naming (see also Section 5.4) which allows composing
name parts and parameters in an operator descriptor arbitrarily. Moreover, the
definition calls that are defined in the next code section are nested. The concept
of nesting mixfix named operations is explained for the following local variable
definition as it is considered more obvious. In the local variable definition block
(after with) a nested definition call utilizing a mixfix named operator is used to
apply a filter on the Set of Customer objects addressed by the owners navigation-
statement which is the abbreviated form of the navigation accounts.owners.
For supporting the explanatory intent for the nested operator calls used, the
thought and more common prefix-notation (like in Java) may state the body
of the local variable definition named WealthyMaleSeniorGermans like the fol-
lowing: wealthyMaleSenior(inGermany(accounts.owners)). In order to be able
to make up all the operator statements used in the Rule above their semantics
have to be defined properly. This is done in the following supporting examples
on APRIL Definitions tailor-made for the Rule they are used in. A description
on the motivation and usage of APRIL Definitions is done in Section 5.3

Filter (customers as Collection of type Customer) in Germany
yielding Collection of type Customer
is defined as
each customer where
at least one account satisfies that

institute.country = ’Germany’ .

Filter wealthy male senior (customers as Collection of type Customer)
yielding Collection of type Customer is defined as

each customer where
age >=55 and isMale and sum of accounts.amount >= 1000000 .

Value the (customer as type Customer) donesnt have to pay
fees for (transactions as Collection of type Transaction)

yielding Boolean
is defined as
every transaction in CustomersTransactions satisfies that
fees = 0

with
CustomersTransactions is defined as
each transaction where
owner = customer .

Filter (transactions as Collection of type Transaction) to accounts
of foreign banks yielding Collection of type Transaction

is defined as
each transaction where
destination.institute.country <> ’Germany’ .

The identifiers of the Value and Filter Definitions are defined in mixfix notation
which is declared as a space separated list of name parts surrounding place hold-
ers for parameters that are explicitly typed. In the examples above the first Filter
definition is a generic collection type specified by the user defined model type
Customer. The entire example (Rule plus its Definitions) impressively shows how
APRIL encourages decomposition that in the end leads to a better readability
of an extensive core rule while in fact the total count of the lines of code may
increase. This in fact can be examined in the following semantically equal OCL
statement.

context Bank inv NoFeesForGermanSeniors:
let wealthy_male_senior_customers : Collection(Customer) =
accounts.owners->select(customer | customer.age >= 55 and
customer.isMale and customer.accounts.amount->sum() >=
1000000) in
let WealthyMaleSeniorGermans : Collection(Customer) =
wealthy_male_senior_customers->select(customer |
customer.accounts->exists(account |
account.institute.country=’Germany’))
in
WealthyMaleSeniorGermans->forAll(customer |
customer.cards.transactions->select(transaction |
transaction.destination.institute.country <> ’Germany’)->
select(transaction |
transaction.card.owner = customer)->forAll(transaction |
transaction.fees=0))

We assert that in contrast to the APRIL example the OCL example is only
understandable to a programmer familiar with OCL. In the following sub sections
the basic concepts of the upper example and the related concepts of APRIL are
briefly discussed.

5.3 Definitions

In APRIL a definition is a named expression which may be used to outsource
expressions from the rules. One particular feature that can be used for Definitions
are names in mixfix notation (See Section 5.4). Definitions can be accessed by
Rules and other Definitions by stating the name and parameters that match in
number, order and type, respectively. The body statements of Definitions are

similar to those of Rule statements. We distinguish three types of definitions as
mentioned in the following sections.

Filter and Value Definitions An often faced scenario specifying business
rules is to filter subsets by applying set comprehension on values of elements
in the base set. Thus, Filter definitions can only return sets. This type of Def-
inition is introduced with the keyword Filter. As filters are very common in
entity modelling we have introduced an extra construct. A more versatile kind of
definition is the Value Definition. Its return value can be of any type and can be
gathered implicitly from its expression at compile time if not explicitly stated.
Its notation is similar to a Filter Definition introduced by the keyword Value.

Model Extension Definitions In APRIL it is possible to annotate extensions
for elements in UML class models corresponding to the abilities given by OCL
that enables the user to textually define attributes and operations. In APRIL,
this ability is restricted to class attributes (introduced with Class attribute)
and side effect free methods (introduced with Class operation). This kind of
Definition is defined similarly to that of the Filter Definition by substituting the
introductory Filter key word with one of the afore mentioned. The motivation
behind this is the integration of object oriented features in APRIL.

5.4 Mixfix Operators

In APRIL a definition header may consist of a user defined mixture of name parts
and parameter definitions which is similar to what is called mixfix operator in
some functional languages. In the older literature mixfix may also be referred to
as distfix [50]. Danielsson et.al. [49] show how to parse mix fix operators. The
benefit of mixfix naming is the gain in flexibility when it comes to achieving
the best readability possible for a business rule. Any definition can be seen as
an extension of the business vocabulary [21]. The syntactic structuring [22] by
means of natural language is delegated to the user, as we think that the human
ability of applying natural language is superior to that of a machine. Thus, we
do not utilize natural language processing. Mixfix naming supports the notation
of syntactic structures closely to natural language [23] which then can be used
to combine business entities. This kind of naming allows APRIL to stay light
weight in terms of its syntax.

5.5 Local Variable Definition

A local variable definition is a method for decomposing business rule expressions.
It is defined inside an APRIL business rule and encapsulates an expression that
has a type and an identifier. These definitions are to be used in other local
variable definitions or in the statements of the actual Rule or Definition. The
typing is done implicitly by deducing the type of the expression it encapsulates.

5.6 Common Constraints

A central aspect that tremendously contributes to the expressiveness of APRIL
is the inclusion of language constructs that allow to shortly specify constraints
that occur very frequently in practical modelling tasks. They are also often re-
ferred to as common constraints. In this paper, we also want to stick to this
nomenclature. In [7, 9, 23, 24, 25] research has been done to elaborate, identify
and group the different types of common constraints. Costal et.al. [1] show that
these types of business rules can cover round about 50% of the over all con-
straints occurring in a real life scenario. However, this paper exclusively deals
with the identifier-common-constraints incorporated into the taxonomy depicted
in Figure 3 showing a hierarchy of the most important common constraints.

Fig. 3. Taxonomy of Statc Common Constraints

The identifier is a constraint that is known to many modelling methods that
deal with entities. UML’s class attributes are predestined for holding a primary
identification rule stated in OCL or APRIL as UML class diagrams by default
lack such means. A real world scenario with respect to Figure 2 may be that a
Bank has a unique IBAN-number, which is stated in APRIL as well as OCL as
follows :

Invariant BankIdentification concerns Bank:
IBAN is unique .

context Bank inv BankIdentification:
Bank.allInstances->isUnique(IBAN)

A more general version of the primary identifier constraint is the internal
uniqueness constraint or composed identifier. It says that value combinations of
two or more attributes of a class are unique [23, 25]. E.g. in Figure 2 an object
of type Customer is identified by name and dateOfBirth. The APRIL and OCL
statements look like:

Invariant CustomerIdentification concerns Customer:
each name, dateOfBirth combination is unique .

context Customer inv CustomerIdentification:
Customer.allInstances->forAll(c1,c2 | c1<>c2 implies
not((c1.name = c2.name and
c1.dateOfBirth = c2.dateOfBirth)))

5.7 Syntax of APRIL

The syntax of APRIL is specified as Grammar in Extended Backus-Naur Form
(EBNF, see Appendix A). This specification is the basis for building the APRIL-
parser, which integrates into the APRIL-tool currently under construction. We
have realized the parser using the eclipse based xtext-tool [26]. In the following
we give a short description of the APRIL syntax using two example rules.

For addressing all instances instantiated from a class the following expression
is used:

"all instances of" <ID>

The APRIL all instances function is introduced by the ”all instances of” keyword
followed by an <className> that is a class name (e.g. Customer).

In APRIL, one of the core concepts is the possibility to decompose large
rules into smaller fragments ((see 5.3)). For that reason we want to describe the
syntax of the Filter Definition. For a more detailed insight into the syntax of
APRIL the reader may be referred to Appendix A.

<FilterDefinition> ::=
"Filter" <MixFixName> ["yielding" <ID>] "is defined as" <Rule>

A concrete example following this rule is the expression (adopted from Section
5.2):

Filter (transactions as Collection of type Transaction) to accounts
of foreign banks yielding Collection of type Transaction

is defined as
each transaction where
destination.institute.country <> ’Germany’ .

The non-terminal symbol <FilterDefinition> is the identifier for the fil-
ter rule. The filter rule is introduced by the keyword Filter followed by a
user defined mixfix name. The mixfix name may consist of several white-space-
separated name constants and parameter descriptors in an arbitrary order. The
keyword yielding indicates the type specified by a descriptor e.g. Collection
of type Customer. Although this expression is marked optional, indicated by

square brackets, we strongly recommend to make use of it. As if not, the derived
type from the body expression might differ from that which the user intended.
The header of the filter definition is separated from its body by the keyword
is defined as. The body of a filter definition in APRIL is indicated by the
non-terminal symbol <Rule>.

The complete syntax of APRIL is in Appendix A.

5.8 First Steps Towards a Semantics of APRIL

The semantics of APRIL is defined using the Object Constraint Language (OCL)
2.0 [4]. We chose a denotational semantics for mapping APRIL expressions into
OCL-expressions. In order to indicate the meaning of an expression we use J.K
as interpretation function as follows:
J.K:APRIL_Expression→ OCL_Expression.
Whereas APRIL_Expression denotes a set of character sequences that have to be
built obeying the <Rules> production rule according to the syntax specification
(see Appendix A.1). Any character sequence of sort APRIL_Expression can be
translated to a character sequence of sort OCL_Expression, which obeys the
production rules of the OCL syntax [4].

The semantic foundation of OCL is realized by several tool manufacturers
according to the OCL specification. Moreover, a lot of effort of the scientific
community has been taken to provide semantic underpinnings for OCL e.g. [4,
35, 47]. The presented semantics is therefore based on these results. Even if that
work might not be finished or discussed, due to the existing implementations of
OCL-tools, OCL can be used as foundation of the semantics. Additionally, the
use of a slightly discussed OCL semantics is better than using natural language
for describing business rules.

Most of the basic functions of APRIL (e.g. select-function see Appendix C)
can be used directly to OCL and do not need any further processing with respect
to the APRIL definitions (see 5.3).

Here the translation of the APRIL AllInstances-function stands as an exam-
ple for the translation of basic functions from APRIL to OCL.

J”all instances of” < className >K := J< className >K− > allInstances()
In this example, the semantics of the APRIL AllInstances-function is mapped
onto its corresponding OCL-function. The concrete usage in a stepwise transla-
tion of an APRIL-select function may look like:

1. Jeach transaction in all instances of Transaction where

destination.institute.country <> ’Germany’ K
In this step, we choose the translatation into
<SelectFunction> ::= <source>->select(<iterator>|<body>) (see Ap-
pendix C, first table, row nine).

2. Jall instances of TransactionK->select(JtransactionK|
Jdestination.institute.countryKJ<>KJ′Germany′K)

The second step maps the parameters of the APRIL-function to the param-
eters of the OCL-function. Whereas the <body> part gets translated into an
OCL-expression using a relational infix operator with two parameters.

3. Transaction.allInstances()->select(JtransactionK|
Jdestination.institute.countryKJ<>KJ′Germany′K)
In this step the AllInstances-function gets translated. In this context the
meaning of class name (J< className >KCM) is defined as element of the
set of class names defined in the corresponding UML-class model. The respec-
tive class model (CM) spans the graph upon which expressions are specified.
Thus, for referring single objects or sets of objects class names, in combi-
nation with certain functions, or role names, attached to association ends,
are used. Each name of a UML-class is a sequence of alphanumeric charac-
ters with special conventions of ordering described in the UML-specification
[4]. In this example the parameter <className> is occupied by the value
Transaction.

4. Transaction.allInstances()->select(transaction |

destination.institute.country <> ’Germany’)

At last the low layer tokens get translated. Thus, <iterator> (here occupied
by value transaction) gets translated into transaction as user defined
iterator variables are adopted unchanged. The path name
destination.institute.country also gets adopted unchanged. However,
note that e.g. APRIL allows to abbreviate navigation paths in some special
cases (see Section 5.1), which has to be resolved in a preceding step. The basic
operator <> (see Appendix B) as well as basic types like integers and strings
(here ’Germany’) also get adopted as they are. Hence, the final translation
step results into the OCL expression.

For a more detailed insight into the translation examples of APRIL to OCL
the reader may be referred to Appendix C.

5.9 Short summary of the core concepts of APRIL

Our main aim is to enable the user to specify formal business rules in a struc-
tured, clear and natural language like way. By now we have elaborated the syntax
and semantically OCL-based foundation to specify static constraints based on
UML class models. A critical issue is also to provide mechanisms for decom-
posing rules e.g. via Definitions (see Section 5.3) that encourages the employ-
ment of methods of separation of concerns well known to existing programming
paradigms. However, a big difference between APRIL and its target language
OCL is that constraints are defined component centric in OCL. That means every
invariant upon a class is defined in the same OCL constraint. Molina [15] shows
that a separation of concerns at subcomponent level like UML classes is useful
to reduce complexity at design time. Predicate logic is the basis for APRIL’s
expressive power. Another feature for forming user-defined natural language like

expressions to declare and refer to sub expressions is that APRIL makes use of
definition names with a mixfix notation. We believe that allowing the user to
intelligently compose mixfix named operations helps to make natural language
statements. Halpin [23] also supports this attitude towards mixfix naming. An-
other yet important point that significantly contributes to the expressive power
of APRIL is to involve language concepts that simplify the specification of fre-
quently used constraints in practical modelling. The importance of common con-
straints in practical modelling is underlined by the work done in [1, 7, 9, 23, 25].
They elaborated many of the common constraints used in real world scenarios
and grouped them into a taxonomy depicted in Figure 3. APRIL uses a static
type system that is equal to that of OCL.

5.10 Towards a methodology for defining APRIL Statements

Section 5.2 shows an APRIL-Statement that is very near to its natural language
business rule. Being able to formulate statements like this, does not come for free
simply because of the use of APRIL. The intelligence of making use of natural
language is delegated to the user while APRIL only takes the helper role of an-
notating the formal semantics behind the user-defined expressions. Thus, a first
step towards formulating a rule statement that is close to a natural language
sentence is to make aware which entities are concerned by that rule. In our
example from Section 5.2 these entities of the types Customer, Transaction,
Account and Bank as well as the attribute fees of the class Transaction. At
least these concepts have to be in the sentence to make the natural language
semantics and the APRIL-semantics go congruent. The second step is to con-
sider a natural language refinement of these concepts for making them reusable
e.g. in an APRIL-Definition construct. E.g. ”Customers in Germany” filters all
Customers having a bank-account at a German bank. The next step is to think
about the natural language composition of these sentence fragments that are to
be cast into an operation name of an APRIL-Definition. It is important to bear
in mind that formal semantics aspects have to be met also. E.g. if an opera-
tion wealthy male senior (customers as Collection of type Customer)

takes a generic collection specified by type Customer as parameter it is obligatory
that the nested operation (customers as Collection of type Customer) in

Germany yields this type. The last step is to specify the APRIL semantics be-
hind the concepts as exemplified in the other APRIL-Definition expressions in
Section 5.2. Our experience in sticking to this methodology is that it can some-
times be time consuming especially for very extensive statements. The reason is
that more than one iteration loop have to be conducted before a good result is
generated. Thus, future work will also focus on a tool based aid for composing
typed APRIL-Definitions to a sentence.

6 Conclusion and Future Work

With AtomsPro we aim to achieve more effectiveness in the software develop-
ment process. This is done by means of the model driven software development

paradigm to support the automatic generation of significant parts of the ap-
plication based on domain- and architecture-models as well as an innovative
language for the notion of business constraints. The domain models bear the
actual business logic and are on a higher level of abstraction than the code,
which is generated from them. A significant enhancement towards an increase
in maintenance and reusability is the use of the architecture and deployment
model, which structure the domain logic. Another yet significant issue is to con-
tribute to the needs of domain experts who shall be enabled to formally express
business rules upon parts of the domain model by means that are almost like
natural language. Therefore, we introduce APRIL. However, different tasks are
still open especially in terms of a tool-support for APRIL:

– Evaluation of compiler technologies on how to handle mixfix definitions ef-
fectively.

– Investigations on appropriate tool support for specifying business rules are
targeted. It might show up that innovative IDE-concepts are necessary.

– Based on the previously defined semantics and the already available parser
a compiler which translates APRIL expressions to OCL expressions has to
be realized.

– Also methods for recomposing APRIL statements into consistent and per-
formance oriented OCL-constraints have to be evaluated as they can have a
strong impact for further processes in a tool chain.

– In parallel some industrial case studies have to be carried out to determine
whether APRIL expressions can be easily defined and understood. So it has
to be checked on more real life examples how realistic business rules can be
expressed by APRIL and if this can be done in a more understandable way
than OCL.

– Comprehensive case studies for validating the methodologies for the efficient
use of AtomsPro as well as APRIL

References

1. D. Costal, C. Gómez, A. Queralt, R. Raventós, E. Teniente: Facilityting the Defini-
tion of the General Constraints in UML, Springer, Berlin Heidelberg, 2006

2. Markus Schacher, Patrick Graessle: Agile Unternehmen durch Business Rules,
Springer Verlag Berlin Heidelberg 2006

3. Peter Coad, Edward Yourdon: Object Oriented Analysis, Prentice Hall; 2 edition
(1 Nov 1990), ISBN-13: 978-0136299813

4. OMG: UML, http://www.uml.org/; as integral part: OCL,
http://www.omg.org/technology/documents/formal/ocl.htm

5. J. Rumbaugh, I.Jacobson, G.Booch: The Unified Modeling Language Reference
Manual, 2. Edition, Addison-Wesley, 2005

6. Markus Voelter, Thomas Stahl et.al. : Model-Driven Software Development, John
Wiley & Sons, 2006

7. Terry Halpin, Business Rule Verbalization, Information Systems Technology and its
Applications, 3rd International Conference ISTA 2004 pp 39-52, Salt Lake City, Utah

8. ACME Team, Acme-Project web site: http://www.cs.cmu.edu/˜acme/

9. Elita Miliausikaite, Lina Nemuraite: Taxonomy of Integrity Constraints in Concep-
tual Models. IADIS Virtual Multi Conference on Computer Science and Information
Systems 2005.

10. Mugurel T. Ionita, Dieter K. Hammer, Henk Obbink: Scenario-
Based Software Architecture Evaluation Methods: An Overview
http://wwbiw.win.tue.nl/oas/architecting/aimes/papers/ Scenario-Based SWA
Evaluation Methods.pdf

11. André van der Hoek, Marija Rakic, Roshanak Roshandel, Nenad Medvidovic :
Taming Architectural Evolution, ACM SIGSOFT Software Engineering Notes, Vol
26, pp 1-10, 2001

12. D. Garlan, R. Allen, J.Ockerbloom. ”Exploiting Style in Architectural Design En-
vironments” In Proceedings of SIGSOFT 1994: Foundations of Software Engineering,
pp. 175-188, New Orleans, Luisiana, USA, 1994.

13. Lei Ding, Nenad Medvidovic: Focus: A Light-Weight, Incremental Approach to
Software Architecture Recovery and Evolution

14. David Garlan and Bradley Schmerl. Ævol: A tool for defining and planning archi-
tecture evolution. In 2009 International Conference on Software Engineering, May
2009. Accepted for Publication

15. Sagar Chaki, Andres Diaz-Pace, David Garlan, Arie Garfunkel and Ipek Ozkaya.
Towards Engineered Architecture Evolution. In Workshop on Modeling in Software
Engineering 2009, May 2009. Accepted for Publication.

16. David Garlan. Evolution Styles: Formal foundations and tool support for software
architecture evolution. Technical report, CMU-CS-08-142, School of Computer Sci-
ence, Carnegie Mellon University, June 2008.

17. George Edwards, Chiyoung Seo, Nenad Medvidovic: Model Interpreter Frame-
works: A Foundation for the Analysis of Domain-Specific Software Architectures
http://csse.usc.edu/˜cseo/publication/MIFs.pdf

18. Shang-Wen Cheng, and David Garlan: ”Mapping Architectural Concepts to UML-
RT” in 2001 International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’2001), Monte Carlo Resort, Las Vegas, Nevada,
USA, June, 2001.

19. Martin Fowler, Martin Fowlers Blog web-site:” Language Workbenches: The Killer-
App for Domain Specific Languages?”, http://martinfowler.com/articles/ language-
Workbench.html3

20. E.W. Dijkstra, A Discipline of programming, Prentice Hall, Englewood Cliffs, NJ,
1976

21. Markus Schacher, Patrick Graessle: Agile Unternehmen durch Business Rules,
Springer Verlag Berlin Heidelberg 2006

22. F. Aarts, J.Aarts: English Syntactic Structures, Prentice Hall, 1982; ISBN: 978-
0080286341

23. Terry Halpin, Verbalizing Business Rules, Business Rules Journal, Part 1-16, 2005
24. Constructing the infrastructure for the knowledge economy : methods and

tools, theory and practice, ed. by Henry Linger et.al., New York [u.a.] : Kluwer
Acad./Plenum Publ., 2004. - XIV, ISBN 0-306-48554-0

25. Elita Miliausikaite, Lina Nemuraite: Representation of Integrity Constraints in
Conceptual Models, Information Technology and Control, 2005, Vol.34, No.4

26. itemis, xtext- tool : http://xtext.itemis.de/
27. JetBrains, Meta Programming System MPS: http://www.jetbrains.com/mps/index.html
28. MetaCase, MetaEdit+: http://www.metacase.com/
29. OMG, Model Driven Architecture: http://www.omg.org/mda/

30. microTool, ObjectIF: http://www.microtool.de

31. Eclipse open plattform, Open Architecture Ware:
http://www.openarchitectureware.org/

32. AndroMDA: http://www.andromda.org

33. Joanna Chimiak-Opoka, Birgit Demuth, Darius Silingas, et. al. : Requirements
Analysis for an Integrated OCL Development Environment, ACM/IEEE 12th In-
ternational Conference on Model Driven Engineering Languages and Systems, OCL
Workshop 2009, Denver, Colorado, USA, 2009

34. Dresden OCL Toolkit http://dresden-ocl.sourceforge.net/

35. Together von Borland, http://www.borland.com

36. Use Tool, state 2008, http://www.db.informatik.unibremen. de/projects/USE/

37. J. Ackermann. Formal Description of OCL Specification Patterns for Behavioral
Specification of Software Components. T. Baar, editor, Workshop on Tool Support
for OCL and Related Formalisms, Technical Report LGL-REPORT-2005-001, pages
15-29. EPFL, 2005

38. I. Jacobson, M. Christerson, P. Jonsson: Object-Oriented Software Engineering -
A Use Case Driven Approach, Addison-Wesley, 1992, ISBN 0-2015-4435-0

39. HQL: http://docs.jboss.org/hibernate/core/3.3/reference/en/ html/query-
hql.html

40. Steven Kelly, Juha-Pekka Tolvanen, Domain-Specific Modeling, ISBN: 978-0-470-
03666-2, March 2008, Wiley-IEEE Computer Society Press

41. Martin Fowler, Kendall Scott: UML distilled (2nd ed.): a brief guide to the standard
object modeling language, Addison-Wesley, 2000

42. Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Rob-
bins. ”Modeling Software Architectures in the Unified Modeling Language.” ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 1, pages 2-57
(January 2002).

43. Mohamed Mancona Kandé, Alfred Strohmeier: Towards a UML profile for software
architecture descriptions, Proceedings of the 3rd international conference on The
unified modeling language: advancing the standard, 2000

44. OMG, Catalog of UML Profile Specifications:
http://www.omg.org/technology/documents/ profile catalog.htm

45. OMG, SBVR 1.0 Specification, http://www.omg.org/spec/SBVR/1.0/

46. Alessandra Giordiani, Alessandro Moschitti: Syntactic Structural Kernels for Nat-
ural Language Interfaces to Databases, W. Buntine, M. Grobelnik et. al., ECML
PKDD 2009, LNAI 5781, pp. 391- 406, Springer Berlin Heidelberg, 2009

47. M. Wahler, J. Koehler, A. D. Brucker: Model-Driven Constraint Engineering ,
Proceedings of the Sixth OCL Workshop, OCL for (Meta-)Models in Multiple Ap-
plication Domains (OCLApps 2006)

48. M. Giese, R. Haehnle, D. Larsson: Rule-Based Simplification of OCL Constraints,
Chalmers University of Technology, School of Computer Science and Engineering

49. Nils Anders Danielsson, Ulf Norell: Parsing Mixfix Operators, Accepted for publi-
cation in the proceedings of the 20th International Symposium on the Implementation
and Application of Functional Languages (IFL 2008)

50. Simon L. Peyton Jones: Parsing distfix operators, Communications of the ACM
Volume 29, pp 118-122, 1986, ACM, New York

51. Bernhard Beckert, Reiner Haehnle, Peter H. Schmitt: Verification of Object-
Oriented Software The KeY Approach. Lecture Notes in Artificial Intelligence,
Springer Berlin Heidelberg, No 4334, 2007, pp 317 333

52. J. Ackermann. Formal Description of OCL Specification Patterns for Behavioral
Specification of Software Components. T. Baar, editor, Workshop on Tool Support
for OCL and Related Formalisms, Technical Report LGL-REPORT-2005-001, pages
1529. EPFL, 2005.

52. C. J. Date, Hugh Darwen: A Guide to SQL Standard, Addison-Wesley Professional;
4 edition 1996.

53. Jordi Cabot, Raquel Pau, Ruth Raventós: From UML/OCL to SBVR specifica-
tions: A challenging transformation, ELSEVIER 2009

54. Marjan Mernik, Jan Heering, Anthony M. Sloane: When and how to develop
domain-specific languages, ACM Computing Surveys (CSUR) archive Vol. 37, ACM
New York, NY, USA 2005

55. . R.J. Kate, R.J. Mooney: Using string-kernels for learning semanitc parsers, Pro-
ceedings of the 21st ICCL and 44th Annual Meeting of the ACL, Sydney, Australia,
July 2006, pp. 913-930. Association for Computational Linguistics (2006)

56. . L.S. Zettlemoyer, M. Collins: Learning to map senteces to logical form: Structured
classification with probablistic categorial grammars. UAI, pp 658 666 (2005)

57. Y. W. Wong, R. Mooney: Learning for semantic parsing with statistical ma-
chine translation. Proceedings of the Human Language Technology Conference of
the NAACL, Main Conference, New York City, USA, June 2006, pp 439 446. Asso-
ciation for Computational Linguistics 2006

58. R. Ge, R. Mooney: A statistical semantic parser that integrates syntax and se-
mantics. Proceedings in the Ninth Conference on Computational Natural Language
Learning (CoNLL-2005), Ann Arbor, Michigan, June 2005, pp. 9-16. Association for
Computational Linguistics 2005

59. Daniel Jurafsky, James H. Martin: Speech and Language Processing, Prentice Hall;
2 edition, 2008, ISBN: 978-0131873216

60. Nello Cristianini, John Shawe-Taylor: An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods, Cambridge University Press 2000, ISBN:
0 521 78019 5

61. Erik Sandewall: Representing Natural-Language Information in Predicate Calcu-
lus, Stanford Univ Calif Dept of Computer Science., Stanford Artificial Intelligence
Laboratory 1970

Christian Bacherler is a project engineer at the Institute
of Applied Research which is attached to the University of Ap-
plied Sciences Ingolstadt, since October 2007. His major research
interests are in the area of automated generation of software
code for automation systems, Model Driven Software Develop-
ment and the formal modelling of domain knowledge utilizing
concepts of natural language. Christian Bacherler was born in
1981 in Ingolstadt, Germany. He holds a diploma degree in en-
gineering and business from the University of Applied Sciences
Ingolstadt and takes part in an educational programme for post-

graduate Students to take their MPhil/PhD thesis at the De Montfort University
Leicester, England.

Christian Facchi is Professor for SW Engineering, Dis-
tributed Systems and Mathematics at the University of Ap-
plied Sciences Ingolstadt, Germany since 2004. His major re-
search interests are in the area of performance analysis and
modelling, Car2X Communication, testing of Software and Soft-
ware Development Process. In those areas he is leading sev-
eral industrial and public founded research projects. Since 2006
he is a member of the scientific consulting committee of SCO-
PAR(www.scopar.de).

Dr. Facchi was born in 1964 at Munich, Germany. He holds
a doctoral degree and a diploma degree from the Technische
Universitaet Muenchen, Germany both for Computer Science.

Before he changed to the Fachhochschule Ingolstadt he has been employed at
Siemens in the Mobile Phones development department for 9 years. During his
employment at Siemens Mobile Phones he was the head of worldwide strategy
for SW development environments and the leader of several projects.

Hans-Michael Windisch is Professor for Software Engi-
neering and Technical Computer Science at the University of
Applied Sciences Ingolstadt (HI), Germany since 2002. His re-
search interests are in the area of Model Driven Software De-
velopment (MDSD) and Software Testing where he is currently
taking part in several research projects. Dr. Windisch was born
in 1964 in Ingolstadt, Germany. He holds a doctoral degree and
a diploma degree in Computer Science from Technische Univer-
sitaet Muenchen, Germany. Before joining HI he worked on big
software development projects as Software Engineer, Consultant
and Project Manager. In 2000 he co-founded eMundo GmbH in
Munich, a Software and IT Consulting company specializing on

developing Enterprise IT Systems based on Java. He is one of eMundo’s manag-
ing directors ever since.

A Syntax of APRIL in EBNF

Grammar excerpt of the xtext-Implementation of APRIL in the version 0.3 .

"StartSymbol" = <Model>

<ID>::= ("a".."z" | "A" .. "Z" | "_") {"a".."z" | "A" .. "Z" | "_" | "0".."9" }
<Number> ::= <Integer> | <Float>
<Integer> ::= ("0".."9") {"0".."9"}
<Float> ::= <Integer>.<Integer>
<Boolean> ::= "true" | "false"
<MixFixName> ::= (<ID> | <MNParamDefinition>) [" " <MixFixName>]
<MNParamDefinition>::= "(" <ID> "as" <ID> ")"
<OperationName> ::= <ID> "(" [<ID> ["as" <ID>] {"," <ID> ["as" <ID>"]}] ")"
<ClassName> ::= <ID>
<PathNameOrDefinionCall> ::= "this" | [<preExpression>] <NavigationPath> | <MixFixName>
<NavigationPath> ::= <ID> {"." <ID>}
<AttributeOrClassNameList> ::= <NavigationPath> \{"," <NavigationPath>\}
<preExpression> ::= "former value of" <ID>

A.1 Rules

<Model> ::= (<Definitions> | <Rules>) {<Definitions> | <Rules>}

<Rules> ::= <Invariant> | <PreOrPostCondition>

<PreOrPostCondition> ::=
("Precondition" | "Postcoindition") <ID> "concerns" <OperationName> ":" <Rule>

<Invariant> ::= "Invariant" <ID> "concerns" <ClassName> ":" <Rule>

<Definitions> ::= <FilterDefinition> | <ExtensionDefinition> | <ValueDefinition>

<FilterDefinition> ::=
"Filter" <MixFixName> ["yielding" <ID>] "is defined as" <Rule>

<ExtensionDefinition> ::=
"Class attribute" <pathName> ["yielding" <ID>] "is defined as" <Rule> |
"Class operation" <OperationName> ["yielding" <ID>] "is defined as" <Rule>

<ValueDefinition> ::= "Value" <MixFixName> ["yielding" <ID>] "is defined as" <Rule>

<Rule> ::= <BooleanExpression> <RuleEnd>

<RuleEnd> ::= ("." | <LocalVariableDefinitionBlock>)

<LocalVariableDefinitionBlock> ::=
"with" <LocalVariableDefinition> {"," <LocalVariableDefinition>} "."

<LocalVariableDefinition> ::= <ID> "is defined as" <BooleanExpression>

<BooleanExpression> ::= <AndExpression> { ("or" | "implies that") <BooleanExpression>}
<AndExpression> ::= <RelationalExpression> {"and" <AndExpression>}

<RelationalExpression> ::=
<AdditionExpression> {(">" | "<" | ">=" | "<=" | "=" | "<>") <RelationalExpression>}

<AdditionExpression> ::=
<MultiplicationExpression> {"+" <AdditionExpression>}

<MultiplicationExpression> ::=
<NagationExpression> {("*" | "/") <MultiplicationExpression>}

<NegationExpression> ::= ["-" | "not" | "it is not the case that"] <Value>

<Value> ::= <Boolean> |
<ID> |
<Number> |
"(" <BooleanExpression> ")" |
<PathNameOrDefinitionCall> |
<Functions>

<Functions> ::= <SetFunctions> |
<BoolFunctions> |
<ValueFunctions>

A.2 Function Lexicon

<BoolFunctions> := <ForAll> |
<Exists> |
<IsEmpty> |
<IsNotEmpty> |
<Unique> |
<Includes> |
<Excludes> |
<Equivalence>

<ForAll> ::=
"every" <ID> [, <ID>] ["in" <PathNameOrDefinitionCall>] "satisfies that" <BooleanExpression>

<Exists> ::=
"at least one" <ID> ["in" <PathNameOrDefinitionCall>] "satisfies that" <BooleanExpression>

<IsEmpty> ::= <PathNameOrDefinitionCall> "is empty"
<IsNotEmpty> ::= <PathNameOrDefinitionCall> "is not empty"

<Unique> ::= <PathNameOrDefinitionCall> "is unique" |
<PathNameOrDefinitionCall> "is unique in" <Value>

<Includes> ::= <PathNameOrDefinitionCall> "is in" <Value>
<Excludes> ::= <PathNameOrDefinitionCall> "is not in" <Value>

<Equivalence> ::=
"for every" [<ID> "in"] <PathNameOrDefinitionCall>
"all or none of the following holds :" <BooleanExpression> {"," <BooleanExpression>}

<ValueFunctions> ::= <CountFunction> |
<SumFunction> |
<AtFunction> |
<LastFunction>

<CountFunction> ::= "number of" <ID> "in" <PathNameOrDefinitionCall>
<SumFunction> ::= "sum of" <ID> "from" <PathNameOrDefinitionCall>

<AtFunction> ::=
"element at position" <Integer> "in" (<PathNameOrDefinitionCall> | <SetFunctions>)

<LastFunction> ::=
"element at last position in" (<PathNameOrDefinitionCall> | <SetFunctions>)

<SetFunctions> ::= <SelectFunction> |
<AllInstancesFunction> |
<ReachableObjectsFunction> |
<UnionFunction> |
<IntersectionFunction> |
<EachCombinationFunction> |
<WithoutFunction> |

<CollectionConversionFunctions>

<SelectFunction> ::= "each" <ID> ["in" <PathNameOrDefinitionCall>] "where" <BooleanExpression>
<AllInstancesFunction> ::= "all instances of" <ID>
<ReachableObjectsFunction> ::= "reachable objects along" <ID>

<UnionFunction> ::=
"union of" <PathNameOrDefinitionCall> "with" (<SetFunctions> | <PathNameOrDefinitionCall>)

<IntersectionOf> ::=
"intersection of" <PathNameOrDefinitionCall> "with" (<SetFunctions> | <PathNameOrDefinitionCall>)

<EachCombinationFunction> ::= "each" <AttributeOrClassNameList> "combination"

<WithoutFunction> ::=
<PathNameOrDefinitionCall> "without" (<PathNameOrDefinitionCall> | <SetFunctions>)

<CollectionConversionFunctions> ::= <Set> |
<Bag> |
<Sequence> |
<OrderedSet>

<Set> ::= "collection" <PathNameOrDefinitionCall> "as set"
<Bag> ::= "collection" <PathNameOrDefinitionCall> "as bag"
<Sequence> ::= "collection" <PathNameOrDefinitionCall> "as sequence"
<OrderedSet> ::= "collection" <PathNameOrDefinitionCall> "as ordered set"

B Operations on Basic Types

The following table depicts functions on basic types in APRIL and their transla-
tion into OCL. Although APRIL strives to utilize natural language the functions
are kept in a simple mathematical style. The reason for that is, that it would be
an unacceptable trade off concerning understandability compared to clearness.
As almost everyone is aware of the meaning of the commonly accepted math-
ematical and logical symbols there is no need for re-writing them in natural
language.

APRIL OCL Signature

and and Boolean X Boolean -> Boolean

or or Boolean X Boolean -> Boolean

implies that implies Boolean X Boolean -> Boolean

not |
it is not the case

not Boolean -> Boolean

- -
Integer->Integer ;
Real->Real

+ +
Integer X Integer -> Integer;
Real X Real -> Real

- -
Integer X Integer -> Integer;
Real X Real -> Real

* *
Integer X Integer -> Integer;
Real X Real -> Real

/ /
Integer X Integer -> Integer;
Real X Real -> Real

mod mod
Integer X Integer -> Integer;
Real X Real -> Integer

< <
Integer X integer -> Boolean;
Real X Real -> Boolean

<= <=
Integer X integer -> Boolean;
Real X Real -> Boolean

>= >=
Integer X integer -> Boolean;
Real X Real -> Boolean

> >
Integer X integer -> Boolean;
Real X Real -> Boolean

= =
Integer X integer -> Boolean;
Real X Real -> Boolean

<> <>
Integer X integer -> Boolean;
Real X Real -> Boolean

floor floor Real -> Integer

concat concat String X String -> String

size size String -> Integer

C Examples for translating APRIL functions into OCL

The following table gives an overview of the basic functions in APRIL and how
to translate them into OCL.

APRIL OCL

"all instances of" <ID> < ID > ->allInstances()

number of <iterator> in <source> <source>->count<iterator>

number of <source> <source>->size()

sum of <source> <source>->sum

sum of <source> from <body> <source>->select(<body>)->sum()

union of <source> with <CollectionExp> <source>->union(<CollectionExp>)

union of <source> with <SingleObjExp> <source>->including(<SingleObjExp>)

NavigationPath :=
<ID>{"." <ID>}

<NavigationPath> :=
<ID>{"." <ID>}

each <iterator> [in <source>] where <body> <source>->select([<iterator>|]<body>)

intersection of <source> with <body> <source>->intersection(<body>)

every <iterator> [,<iterator2>] [in <source>]
satisfies that <body>

<source>->forAll(
<iterator>[,<iterator2>] |
<body>)

at least one <iterator> [in <source>]
satisfies that
<body>

<source>->exists(<iterator> | <body>)

<source> is not in <SingleObjExp> <source>->excludes(<SingleObjExp>)

<source> is not in <CollectionExp> <source>->excludesAll(<CollectionExp>)

<source> is in <CollectionExp> <source>->includesAll(<CollectionExp>)

<source> is in <SingleObjExp> <source>->includes(<SingleObjExp>)

<operator1> = <operator2> <operator1> = <operator2>

<source> is empty <source>->isEmpty()

<source> is not empty <source>->notEmpty()

<source> is unique in <body> <body>->isUnique(<source>)

collection <body> as set <body>->asSet()

collection <body> as sequence <body>->asSequence()

collection <body> as bag <body>->asBag()

collection <body> as ordered set <body>->asOrderedSet()

element at position <pos> in <body> <body>->at(<pos>)

element at last position in <body> <body>->last()

Another central part in specifying requirements is to be able to express com-
mon constraints according to Halpin et.al. [7]. For that reason APRIL introduces
special language constructs to express common constraints that are easily spec-
ified in natural language (adopted into APRIL) and at the same time are very
expensive in OCL. The following table gives a brief overview of those common
constraints expressed in APRIL as well as its corresponding version in OCL.

APRIL OCL

each <AttributeOrClassNameList> combination
is unique

<ClassName>.allInstances->forAll(c1,c2 |
implies
not(c1.<attribute> = c2.<attribute> and
c1.<attribute2> = c2.<attribute2>
{and c1.<attributeN> = c2.<attributeN>}))

each <AttributeOrClassNameList> combination
is unique

value(<AttributeOrClassNameList>,1).
allInstances->forAll(c1 |
value(<AttributeOrClassNameList>,2).
allInstances->forAll(c2 |
[value(<AttributeOrClassNameList>,n).
allInstances->forAll(cN |]
ASSOC.allInstances->select(assoc |
assoc.value(<AttributeOrClassNameList>,1) =
c1 and
assoc.value(<AttributeOrClassNameList>,2) =
c2 [and
assoc.value(<AttributeOrClassNameList>,n) =
cN)]->
size()<=1[)]))

// using helper function:
value(CommaSeparatedList::String,
index::Integer)::String {
list::Array = new Array()
list = CommaSeparatedList.splitBy(",")
return list[index]
}

for every element [in <source>]
all or none of the following holds:
<Expression1>, <Expression2> {,
<ExperssionN>}

[<source>->](<Experssion1> and
<Expression2>
{ and <ExpressionN>} or
not (<Expression1> or
<Expression2> { or <ExpressionN>}))

for every element [in <source>]
exactly one of the following holds:
<Expression1>,
<Expression2>
{, <ExperssionN>}

[<source>->]
(
(not (<Expression1>)
and <Expression2>
{and <ExpressionN>})
or
(<Expression1> and
not (<Expression2>)
{and <ExpressionN>})
or
...
(<Expression1> and
<Expression2> and
not (ExpressionN))
)

reachable objects along <PathName>
<SetFunctions(bodyOfSetFunction)>

context <Classname> def:
<PathName>_successors():
Set(<Classname>) =
self.<PathName>->union(
self.<Pathname>.successors())

self.<PathName>_successors()->
<SetFunctions>(<bodyOfSetFunction>)

Impressum

Herausgeber
Der Präsident der
Hochschule für angewandte
Wissenschaften FH Ingolstadt
Esplanade 10
85049 Ingolstadt
Telefon: 0841 9348-0
Fax: 0841 9348-200
E-Mail: info@haw-ingolstadt.de

Druck
Hausdruck
Die Beiträge aus der Reihe „Arbeitsberich-
te – Working Papers“ erscheinen in unre-
gelmäßigen Abständen. Alle Rechte, ins-
besondere das Recht der Vervielfältigung
und Verbreitung sowie der Übersetzung
vorbehalten. Nachdruck, auch auszugs-
weise, ist gegen Quellenangabe gestattet,
Belegexemplar erbeten.

Internet
Dieses Thema können Sie, ebenso wie die
früheren Veröffentlichungen aus der Reihe
„Arbeitsberichte – Working Papers“, unter
der Adresse www.haw-ingolstadt.de nach-
lesen.

ISSN 1612-6483

	Tech_Report_2010_Short_appendix.pdf
	Enhancing Domain Modelling with Easy to Understand Business Rules

	Tech_Report_2010_Short_appendix.pdf
	Enhancing Domain Modelling with Easy to Understand Business Rules

	Tech_Report_2010_Short_appendix.pdf
	Enhancing Domain Modelling with Easy to Understand Business Rules

