Traffic Scenario Clustering by lterative Optimisation of Self-Supervised
Networks Using a Random Forest Activation Pattern Similarity

Overview RFAP Similarity

= Clustering of traffic scenarios given an unlabelled dataset D,
= [raffic scenarios represented as a sequence of occupancy grids
= Learn representations and introduce similarity measure for clustering

= A self-supervised learning framework for generalisation of feature repre-
sentation to unseen/unknown classes

= Using a labelled dataset D; for guiding the clusering of D,

= Three-step clustering using self-supervised pre-training

= A novel similarity measure called Random Forest Activation Pat-

tern (RFAP) similarity is introduced (1
( ) 4 1] = A novel indexing scheme capturing the path information with an id
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= Each sample produces a vector r; = id}, id), . .., id'
Three-Step Process Overview » Hamming distance between two vectors r; and 7, used to calculate S
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0 |: self-supervised pre-training
o 1l fine tuning with labelled classes

o |1l iterative optimisation with RFAP similarity

/ Step I: Pretraining / Step II: Classification Results

Pretext datai| CNN Pretext task Labelled data Classification

= Comparison with other clustering methods using 7 common scenarios
/ from highD [3] dataset

! Step I1I: Clustering

Labelled+Unlabelled Clustering+
data Classification (a) Ego - Following (b) Ego - Left Lane Change (c) Ego - Right Lane Change (d) Leader - Cutin from Right

(e) Leader - Cutin from Left (f) Leader - Cutout from Right (g) Leader - Cutout from Left

Method = 4 classes as labelled and 3 classes as unlabelled
Method ACC (1)
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n @@@@ = Comparison with other similarity measures
Self-supervised pre-training with the pretext task as prediction of the temporal order Similarity cosine. I, KNN| rank RFAPs
of a shuffled occupancy grids from a scenario ACC (T) 0.707 0.703.0.793 0.794 0.810

= UMAP [5] projection before (left) & after (right) iterative optimisation
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lterative optimisation process with RFAP similarity embeded in L ser [2], labelled
classes optimised with L,, training stability maintained by Lo
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T2 iZ1 =1 Conclusion

= RFAP similartiy is introduced to adapt the feature generation process
References of the CNN and is also compared with other similarity measures
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