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Overview

•Clustering of traffic scenarios given an unlabelled dataset Du

•Traffic scenarios represented as a sequence of occupancy grids
•Learn representations and introduce similarity measure for clustering
•A self-supervised learning framework for generalisation of feature repre-

sentation to unseen/unknown classes
•Using a labelled dataset Dl for guiding the clusering of Du

•Three-step clustering using self-supervised pre-training
•A novel similarity measure called Random Forest Activation Pat-

tern (RFAP) similarity is introduced [1]

Three-Step Process Overview

•Step I: self-supervised pre-training
•Step II: fine tuning with labelled classes
•Step III: iterative optimisation with RFAP similarity

Labelled data CNN

Step II: Classification
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Step I: Pretraining

Pretext data Pretext taskCNN

Step III: Clustering
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Self-supervised data preparation Training on pretext task

Self-supervised pre-training with the pretext task as prediction of the temporal order
of a shuffled occupancy grids from a scenario
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Iterative optimisation process with RFAP similarity embeded in Lcluster [2], labelled
classes optimised with Lcat, training stability maintained by Lcons
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RFAP Similarity

•A novel indexing scheme capturing the path information with an id
•Each sample produces a vector ri =
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•Hamming distance between two vectors ri and rj used to calculate S
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Results
•Comparison with other clustering methods using 7 common scenarios

from highD [3] dataset

• 4 classes as labelled and 3 classes as unlabelled
Method ACC (↑)

K-means 0.391
STAE+HC [4] 0.52
Autonovel [2] 0.794

Proposed method (RFAPs) 0.810

Ablations
•Comparison with other similarity measures

Similarity cosine l2 KNN rank RFAPs
ACC (↑) 0.707 0.703 0.793 0.794 0.810

•UMAP [5] projection before (left) & after (right) iterative optimisation
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Conclusion

•RFAP similartiy is introduced to adapt the feature generation process
of the CNN and is also compared with other similarity measures

•Pretext task for training CNNs on large unlaballed traffic scenario
datasets is presented

•Experiments on real-world highway dataset show the advantages of the
three-step method with RFAP similarity over the baselines


